Skip to main content
Log in

Evaluation of low-grade glioma structural changes after chemotherapy using DTI-based histogram analysis and functional diffusion maps

  • Neuro
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objectives

To explore the role of diffusion tensor imaging (DTI)-based histogram analysis and functional diffusion maps (fDMs) in evaluating structural changes of low-grade gliomas (LGGs) receiving temozolomide (TMZ) chemotherapy.

Methods

Twenty-one LGG patients underwent 3T-MR examinations before and after three and six cycles of dose-dense TMZ, including 3D-fluid-attenuated inversion recovery (FLAIR) sequences and DTI (b = 1000 s/mm2, 32 directions). Mean diffusivity (MD), fractional anisotropy (FA), and tensor-decomposition DTI maps (p and q) were obtained. Histogram and fDM analyses were performed on co-registered baseline and post-chemotherapy maps. DTI changes were compared with modifications of tumour area and volume [according to Response Assessment in Neuro-Oncology (RANO) criteria], and seizure response.

Results

After three cycles of TMZ, 20/21 patients were stable according to RANO criteria, but DTI changes were observed in all patients (Wilcoxon test, P ≤ 0.03). After six cycles, DTI changes were more pronounced (P ≤ 0.005). Seventy-five percent of patients had early seizure response with significant improvement of DTI values, maintaining stability on FLAIR. Early changes of the 25th percentiles of p and MD predicted final volume change (R2 = 0.614 and 0.561, P < 0.0005, respectively). TMZ-related changes were located mainly at tumour borders on p and MD fDMs.

Conclusions

DTI-based histogram and fDM analyses are useful techniques to evaluate the early effects of TMZ chemotherapy in LGG patients.

Key Points

DTI helps to assess the efficacy of chemotherapy in low-grade gliomas.

Histogram analysis of DTI metrics quantifies structural changes in tumour tissue.

Functional diffusion maps (fDMs) spatially localize the changes of DTI metrics.

Changes in DTI histograms and fDMs precede changes in conventional MRI.

Early changes in DTI histograms and fDMs correlate with seizure response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

DTI:

diffusion tensor imaging

MRI:

magnetic resonance imaging

fDM:

functional diffusion maps

LGGs:

low-grade gliomas

HGGs:

high-grade gliomas

WM:

white matter

RANO:

Response Assessment in Neuro-Oncology

FLAIR:

fluid-attenuated inversion recovery

TMZ:

Temozolomide

PCV:

Procarbazine, Lomustine, and Vincristine

PR:

partial response

mR:

minor response

SD:

stable disease

PD:

progressive disease

vPR:

volumetric partial response

vmR:

volumetric minor response

vSD:

volumetric stable disease

vPD:

volumetric progression of disease

ADC:

apparent diffusion coefficient

FA:

fractional anisotropy

MD:

mean diffusivity

p :

pure isotropic diffusion

q :

pure anisotropic diffusion

IQR:

interquartile range

ROC:

receiver operating characteristic

AUC:

area under the ROC curve

References

  1. Rudà R, Trevisan E, Soffietti R (2012) Low-grade gliomas. Handb Clin Neurol 105:437–450

    Article  PubMed  Google Scholar 

  2. Castellano A, Bello L, Michelozzi C et al (2012) Role of diffusion tensor magnetic resonance tractography in predicting the extent of resection in glioma surgery. Neuro Oncol 14:192–202

    Article  PubMed  PubMed Central  Google Scholar 

  3. Talos IF, Zou KH, Ohno-Machado L et al (2006) Supratentorial low-grade glioma resectability: Statistical predictive analysis based on anatomic MR features and tumor characteristics. Radiology 239:506–513

    Article  PubMed  PubMed Central  Google Scholar 

  4. Smith JS, Chang EF, Lamborn KR et al (2008) Role of extent of resection in the long-term outcome of low-grade hemispheric gliomas. J Clin Oncol 26:1338–1345

    Article  PubMed  Google Scholar 

  5. Soffietti R, Baumert BG, Bello L et al (2010) Guidelines on management of low-grade gliomas: Report of an EFNS-EANO task force. Eur J Neurol 17:1124–1133

    Article  CAS  PubMed  Google Scholar 

  6. Keles GE, Lamborn KR, Berger MS (2001) Low-grade hemispheric gliomas in adults: A critical review of extent of resection as a factor influencing outcome. J Neurosurg 95:735–745

    Article  CAS  PubMed  Google Scholar 

  7. Brada M, Viviers L, Abson C et al (2003) Phase II study of primary temozolomide chemotherapy in patients with WHO grade II gliomas. Ann Oncol 14:1715–1721

    Article  CAS  PubMed  Google Scholar 

  8. Pace A, Vidiri A, Galie E et al (2003) Temozolomide chemotherapy for progressive low-grade glioma: Clinical benefits and radiological response. Ann Oncol 14:1722–1726

    Article  CAS  PubMed  Google Scholar 

  9. van den Bent MJ, Afra D, de Witte O et al (2005) Long-term efficacy of early versus delayed radiotherapy for low-grade astrocytoma and oligodendroglioma in adults: The EORTC 22845 randomised trial. Lancet 366:985–990

    Article  PubMed  Google Scholar 

  10. Duffau H, Taillandier L, Capelle L (2006) Radical surgery after chemotherapy: A new therapeutic strategy to envision in grade II glioma. J Neurooncol 80:171–176

    Article  PubMed  Google Scholar 

  11. Blonski M, Taillandier L, Herbet G et al (2012) Combination of neoadjuvant chemotherapy followed by surgical resection as a new strategy for WHO grade II gliomas: A study of cognitive status and quality of life. J Neurooncol 106:353–366

    Article  CAS  PubMed  Google Scholar 

  12. Blonski M, Pallud J, Goze C et al (2013) Neoadjuvant chemotherapy may optimize the extent of resection of world health organization grade II gliomas: A case series of 17 patients. J Neurooncol 113:267–275

    Article  CAS  PubMed  Google Scholar 

  13. van den Bent MJ, Wefel JS, Schiff D et al (2011) Response assessment in neuro-oncology (a report of the RANO group): Assessment of outcome in trials of diffuse low-grade gliomas. Lancet Oncol 12:583–593

    Article  PubMed  Google Scholar 

  14. Galanis E, Buckner JC, Maurer MJ et al (2006) Validation of neuroradiologic response assessment in gliomas: Measurement by RECIST, two-dimensional, computer-assisted tumor area, and computer-assisted tumor volume methods. Neuro Oncol 8:156–165

    Article  PubMed  PubMed Central  Google Scholar 

  15. Sorensen AG, Patel S, Harmath C et al (2001) Comparison of diameter and perimeter methods for tumor volume calculation. J Clin Oncol 19:551–557

    CAS  PubMed  Google Scholar 

  16. Dempsey MF, Condon BR, Hadley DM (2005) Measurement of tumor "size" in recurrent malignant glioma: 1D, 2D, or 3D? AJNR Am J Neuroradiol 26:770–776

    PubMed  Google Scholar 

  17. Rudà R, Bello L, Duffau H, Soffietti R (2012) Seizures in low-grade gliomas: Natural history, pathogenesis, and outcome after treatments. Neuro Oncol 14:iv55–64

    Article  PubMed  PubMed Central  Google Scholar 

  18. Price SJ, Pena A, Burnet NG et al (2004) Tissue signature characterisation of diffusion tensor abnormalities in cerebral gliomas. Eur Radiol 14:1909–1917

    Article  PubMed  Google Scholar 

  19. Goebell E, Paustenbach S, Vaeterlein O et al (2006) Low-grade and anaplastic gliomas: Differences in architecture evaluated with diffusion-tensor MR imaging. Radiology 239:217–222

    Article  PubMed  Google Scholar 

  20. Stadlbauer A, Nimsky C, Buslei R et al (2007) Diffusion tensor imaging and optimized fiber tracking in glioma patients: Histopathologic evaluation of tumor-invaded white matter structures. Neuroimage 34:949–956

    Article  PubMed  Google Scholar 

  21. Sternberg EJ, Lipton ML, Burns J (2014) Utility of diffusion tensor imaging in evaluation of the peritumoral region in patients with primary and metastatic brain tumors. AJNR Am J Neuroradiol 35:439–444

    Article  CAS  PubMed  Google Scholar 

  22. Pena A, Green HA, Carpenter TA, Price SJ, Pickard JD, Gillard JH (2006) Enhanced visualization and quantification of magnetic resonance diffusion tensor imaging using the p:Q tensor decomposition. Br J Radiol 79:101–109

    Article  CAS  PubMed  Google Scholar 

  23. Price SJ, Jena R, Burnet NG, Carpenter TA, Pickard JD, Gillard JH (2007) Predicting patterns of glioma recurrence using diffusion tensor imaging. Eur Radiol 17:1675–1684

    Article  PubMed  Google Scholar 

  24. Price SJ, Jena R, Burnet NG et al (2006) Improved delineation of glioma margins and regions of infiltration with the use of diffusion tensor imaging: An image-guided biopsy study. AJNR Am J Neuroradiol 27:1969–1974

    CAS  PubMed  Google Scholar 

  25. Nowosielski M, Recheis W, Goebel G et al (2011) ADC histograms predict response to anti-angiogenic therapy in patients with recurrent high-grade glioma. Neuroradiology 53:291–302

    Article  PubMed  PubMed Central  Google Scholar 

  26. Pope WB, Qiao XJ, Kim HJ et al (2012) Apparent diffusion coefficient histogram analysis stratifies progression-free and overall survival in patients with recurrent GBM treated with bevacizumab: A multi-center study. J Neurooncol 108:491–498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hamstra DA, Chenevert TL, Moffat BA et al (2005) Evaluation of the functional diffusion map as an early biomarker of time-to-progression and overall survival in high-grade glioma. Proc Natl Acad Sci U S A 102:16759–16764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ellingson BM, Malkin MG, Rand SD et al (2010) Validation of functional diffusion maps (fDMs) as a biomarker for human glioma cellularity. J Magn Reson Imaging 31:538–548

    Article  PubMed  PubMed Central  Google Scholar 

  29. Belhawi SM, Hoefnagels FW, Baaijen JC et al (2011) Early postoperative MRI overestimates residual tumour after resection of gliomas with no or minimal enhancement. Eur Radiol 21:1526–1534

    Article  PubMed  PubMed Central  Google Scholar 

  30. Therasse P, Arbuck SG, Eisenhauer EA et al (2000) New guidelines to evaluate the response to treatment in solid tumors. european organization for research and treatment of cancer, national cancer institute of the united states, national cancer institute of canada. J Natl Cancer Inst 92:205–216

    Article  CAS  PubMed  Google Scholar 

  31. De Nunzio G, Pastore G, Donativi M, Castellano A, Falini A (2011) A CAD system for cerebral glioma based on texture features in DT-MR images. Nucl Instr Meth A. doi:10.1016/j.nima.2010.12.086

    Google Scholar 

  32. Moffat BA, Chenevert TL, Lawrence TS et al (2005) Functional diffusion map: A noninvasive MRI biomarker for early stratification of clinical brain tumor response. Proc Natl Acad Sci U S A 102:5524–5529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. O'Connor JP, Jackson A, Asselin MC, Buckley DL, Parker GJ, Jayson GC (2008) Quantitative imaging biomarkers in the clinical development of targeted therapeutics: Current and future perspectives. Lancet Oncol 9:766–776

    Article  PubMed  Google Scholar 

  34. Sherman JH, Moldovan K, Yeoh HK et al (2011) Impact of temozolomide chemotherapy on seizure frequency in patients with low-grade gliomas. J Neurosurg 114:1617–1621

    Article  PubMed  Google Scholar 

  35. Jones TL, Byrnes TJ, Yang G, Howe FA, Bell BA, Barrick TR (2014) Brain tumor classification using the diffusion tensor image segmentation (D-SEG) technique. Neuro Oncol. doi:nou 159 [pii]

  36. Khayal IS, McKnight TR, McGue C et al (2009) Apparent diffusion coefficient and fractional anisotropy of newly diagnosed grade II gliomas. NMR Biomed 22:449–455

    Article  PubMed  PubMed Central  Google Scholar 

  37. Hoefnagels FW, De Witt HP, Sanz-Arigita E et al (2014) Differentiation of edema and glioma infiltration: Proposal of a DTI-based probability map. J Neurooncol 120:187–198

    Article  PubMed  Google Scholar 

  38. Pavlisa G, Rados M, Pavlisa G, Pavic L, Potocki K, Mayer D (2009) The differences of water diffusion between brain tissue infiltrated by tumor and peritumoral vasogenic edema. Clin Imaging 33:96–101

    Article  PubMed  Google Scholar 

  39. Min ZG, Niu C, Rana N, Ji HM, Zhang M (2013) Differentiation of pure vasogenic edema and tumor-infiltrated edema in patients with peritumoral edema by analyzing the relationship of axial and radial diffusivities on 3.0T MRI. Clin Neurol Neurosurg 115:1366–1370

    Article  PubMed  Google Scholar 

  40. Zamecnik J (2005) The extracellular space and matrix of gliomas. Acta Neuropathol 110:435–442

    Article  PubMed  Google Scholar 

  41. Wen PY, Macdonald DR, Reardon DA et al (2010) Updated response assessment criteria for high-grade gliomas: Response assessment in neuro-oncology working group. J Clin Oncol 28:1963–1972

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The scientific guarantor of this publication is Andrea Falini. The authors of this manuscript declare no relationships with any companies, whose products or services may be related to the subject matter of the article. This study has received funding by the Italian Ministry of Health (RF-2009-1530888) and by the Italian Ministry of Education, University, and Research (MIUR PON 254/Ric “Ricerca e competitività 2007-2013”, upgrading of the “Centro ricerche per la salute dell'uomo e dell'ambiente” PONa3_00334). M.R. has received funding by the Fellowship for Abroad 2013 of the Fondazione Italiana per la Ricerca sul Cancro (FIRC). Antonella Castellano conducted this study as partial fulfillment of her PhD in Molecular Medicine, Program in Experimental Neurology, Vita-Salute San Raffaele University, Milan, Italy.

The authors are grateful to Prof. Alessandro Ambrosi that kindly provided statistical advice for this manuscript and Kesshi M. Jordan for English editing. Institutional review board approval was obtained.

Written informed consent was obtained from all patients in this study. Methodology: retrospective, diagnostic study, observational.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Falini.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 6.52 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Castellano, A., Donativi, M., Rudà, R. et al. Evaluation of low-grade glioma structural changes after chemotherapy using DTI-based histogram analysis and functional diffusion maps. Eur Radiol 26, 1263–1273 (2016). https://doi.org/10.1007/s00330-015-3934-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-015-3934-6

Keywords

Navigation