Skip to main content

Increasing signal intensity within the dentate nucleus and globus pallidus on unenhanced T1W magnetic resonance images in patients with relapsing-remitting multiple sclerosis: correlation with cumulative dose of a macrocyclic gadolinium-based contrast agent, gadobutrol



To evaluate correlation between cumulative dose of gadobutrol and signal intensity (SI) within dentate nucleus and globus pallidus on unenhanced T1-weighted images in patients with relapsing-remitting multiple sclerosis (RRMS).


Dentate nucleus-to-pons and globus pallidus-to-thalamus SI ratios, and renal and liver functions, were evaluated after multiple intravenous administrations of 0.1 mmol/kg gadobutrol at 27, 96–98, and 168 weeks. We compared SI ratios based on the number of administrations, total amount of gadobutrol administered, and time between injections.


Globus pallidus-to-thalamus (p = 0.025) and dentate nucleus-to-pons (p < 0.001) SI ratios increased after multiple gadobutrol administrations, correlated with the number of administrations (ρ = 0.263, p = 0.046, respectively) and depended on the length of administration (p = 0.017, p = 0.037, respectively). Patients receiving gadobutrol at 27 weeks showed the greatest increase in both SI ratios (p = 0.006; p = 0.014, respectively, versus 96–98 weeks). GGT increased at the end of the study (p = 0.004).


In patients with RRMS, SI within the dentate nucleus and globus pallidus increased on unenhanced T1-weighted images after multiple gadobutrol injections. Administration of the same total amount of gadobutrol over a shorter period caused greater SI increase.

Key points

Gadolinium deposition may occur within the human brain after multiple gadolinium contrast administrations

Increasing T1W signal intensity occurs within the dentate nucleus and globus pallidus

Increasing signal intensity may be a consequence of multiple administrations of gadobutrol

Administration of gadobutrol over a shorter period causes greater signal intensity increase

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4



Magnetic resonance imaging




Signal intensity


Relapsing-remitting multiple sclerosis


Secondary progressive multiple sclerosis


  1. Giesel F, Mehndiratta A, Essig M (2010) High-relaxivity contrast enhanced magnetic resonance neuroimaging: a review. Eur Radiol 20:2461–2474

    Article  PubMed  Google Scholar 

  2. Caravan P, Ellison JJ, Mcmurry TJ, Lauferr JB (1999) Gadolinium (III) Chelates as MRI contrast agents: structures, dynamics and applications. Chem Rev 99:2293–2352

    Article  CAS  PubMed  Google Scholar 

  3. Bellin MF, Vasile M, Morel-Prtecetti S (2003) Currently used non-specific extracellular MR contrast media. Eur Radiol 13:2688–2698

    Article  CAS  PubMed  Google Scholar 

  4. Pietsch H, Lengsfeld P, Jost G et al (2009) Long-term retention of gadolinium in the skin of following the administration of gadolinium based contrast agents. Eur Radiol 19:1417–1424

    Article  PubMed  Google Scholar 

  5. Sieber MA, Pietsch H, Walter J et al (2008) A preclinical study to investigate the development of Nephrogenic Systemic Fibrosis: a possible role for gadolinium-based contrast media. Investig Radiol 43:65–75

    Article  Google Scholar 

  6. Sieber MA, Pietsch H, Walter J et al (2008) Preclinical investigation to compare different gadolinium-based contrast agents regarding their propensity to release gadolinium in-vivo and to trigger nephrogenic systemic fibrosis-like lesions. Eur Radiol 18:2164–2173

    Article  PubMed  Google Scholar 

  7. Kanda T, Ishii K, Kawaguchi K et al (2014) High signal intensity in the dentate nucleus and globus pallidus on unenhanced T1-weighted MR images: relationship with increasing cumulative dose of a gadolinium-based contrast material. Radiology 270:834–841

    Article  PubMed  Google Scholar 

  8. Roccatagliata L, Vuolo L, Bonzano L et al (2009) Multiple sclerosis: hyperintense dentate nucleus on unenhanced T1-weighted images is associated with the secondary progressive subtype. Radiology 251:503–510

    Article  PubMed  Google Scholar 

  9. Polman CH, Reingold SC, Banwell B et al (2011) Diagnostic criteria for multiple sclerosis: 2010 revision to the Mc Donald criteria. Ann Neurol 69:292–302

    Article  PubMed Central  PubMed  Google Scholar 

  10. Kasahara S, Miki Y, Kanagaki M et al (2011) Hyperintense dentate nucleus on unenhanced T1-weighted MR images is associated with a history of brain irradiation. Radiology 258:222–258

    Article  PubMed  Google Scholar 

  11. LeVine SM (1997) Iron deposits in multiple sclerosis and Alzheimer’s disease brains. Brain Res 760:298–303

    Article  CAS  PubMed  Google Scholar 

  12. Chan DE, Pan HC, Ho DM et al (2007) Presence of activated microglia in a high-signal lesion on T1-weighted MR images: a biopsy sample re-examined. AJNR Am J Neuroradiol 28:602

    Google Scholar 

  13. Drayer B, Burger P, Hurwitz B et al (1987) Reduced signal intensity on MR images of thalamus and putamen in multiple sclerosis: increased iron content? AJR Am J Roentgenol 149:357–363

    Article  CAS  PubMed  Google Scholar 

  14. Brass SD, Chen NK, Mulkern NV, Bakshi R (2006) Magnetic resonance imaging of iron deposition in neurological disorders. Top Magn Reson Imaging 17:31–40

    Article  PubMed  Google Scholar 

  15. Drayer BP, Burger P, Hurwtz B et al (1987) Magnetic resonance imaging in multiple sclerosis: decreased signal in thalamus and putamen. Ann Neurol 22:546–550

    Article  CAS  PubMed  Google Scholar 

  16. Craelius W, Migdal MW, Luessenhop CP et al (1982) Iron deposits surrounding multiple sclerosis plaques. Arch Pathol Lab Med 106:397–399

    CAS  PubMed  Google Scholar 

  17. Shin JC, Kim E, Sheong HK et al (2007) High signal intensity on magnetic resonance imaging as a predictor of neurobehavioral performance of workers exposed to manganese. Neurotoxicology 28:257–262

    Article  CAS  PubMed  Google Scholar 

  18. Fujioka M, Taoka T, Matsuo Y et al (2003) Magnetic resonance imaging shows delayed ischemic striatal neurodegeneration. Ann Neurol 54:732–747

    Article  PubMed  Google Scholar 

  19. Powell T, Sussman JG, Davies-Jones GA (1992) MR imaging in acute multiple sclerosis: ring-like appearance in plaque suggesting the presence of paramagnetic free radicals. AJNR Am J Neuroradiol 13:1544–1546

    CAS  PubMed  Google Scholar 

  20. Terada H, Barkovich AJ, Edwards MS, Ciricillo SM (1996) Evolution of high-intensity basal ganglia lesions on T1-weighted MR in neurofibromatosis type 1. AJNR Am J Neuroradiol 17:755–760

    CAS  PubMed  Google Scholar 

  21. Daszkiewicz OK, Hennel JW, Szczepkowski TW, Lubas B (1963) Proton magnetic relaxation and protein hydration. Nature 200:1006–1007

    Article  CAS  Google Scholar 

  22. Henkelman RM, Watts JF, Kucharzyk W (1991) High signal intensity in MR images of calcified brain tissue. Radiology 179:199–206

    Article  CAS  PubMed  Google Scholar 

  23. Boyko OB, Burger PC, Shelburne JD, Ingram P (1992) Non-heme mechanisms for T1 shortening: pathologic, CT, and MR elucidation. AJNR Am J Neuroradiol 13:1439–1445

    CAS  PubMed  Google Scholar 

  24. Warakaulle DR, Anslow P (2003) Differential diagnosis of intracranial lesions with high signal on T1 or low signal on T-2 weighted MRI. Clin Radiol 58:922–933

    Article  CAS  PubMed  Google Scholar 

  25. Suzuki S, Nishio S, Takata K et al (2000) Radiation-induced brain calcification: paradoxical high signal intensity in T1-weighted images. Acta Neurochir (Wien) 142:801–804

    Article  CAS  Google Scholar 

  26. Weinmann HJ, Gries H, Speck U (1992) Fundamental physics and chemistry: Types of contrast agents. In: Sartor K (ed) MR imaging of the skull and brain: a correlative text atlas. Springer-Verlag, New York, NY, pp 26–28

    Google Scholar 

  27. Hegde A, Mohan S, Lath N, Lim CCT (2011) Differential diagnosis for bilateral abnormalities of basal ganglia and thalamus. Radiographics 31:5–30

    Article  PubMed  Google Scholar 

  28. Kim TJ, Kim TO, Kim WS et al (2006) MR imaging of the brain in Wilson disease of childhood: findings before and after treatment with clinical correlation. AJNR Am J Neuroradiol 2:1373–1378

    Google Scholar 

  29. Lai PH, Chen C, Liang HL, Pan HB (1999) Hyperintense basal ganglia on T1-weighted MR imaging. AJNR Am J Neuroradiol 172:1109–1115

    CAS  Google Scholar 

  30. Valdés Hernández Mdel C, Maconick LC, Tan EM, Wardlaw JM (2012) Identification of mineral deposits in the brain on radiological images: a systematic review. Eur Radiol 22:2371–2381

    Article  PubMed  Google Scholar 

  31. Brunberg JA, Kanal E, Hirsch W, Van Thiel DH (1991) Chronic acquired hepatic failure: MR imaging of the brain at 1.5 T. AJNR Am J Neuroradiol 12:909–914

    CAS  PubMed  Google Scholar 

  32. Rovira A, Alonso J, Cordoba J (2008) MR imaging findings in hepatic encephalopathy. AJNR Am J Neuroradiol 29:1612–1621

    Article  CAS  PubMed  Google Scholar 

  33. Oikonomu A, Chatzistefanou A, Zezos P et al (2012) Basal ganglia hyperintensity on T1-weighted MRI in Rendu-Osler-Weber disease. J Magn Reson Imaging 35:426–430

    Article  Google Scholar 

  34. Mirowitz SA, Westicks TJ, Hirsch JD (1991) Hyperdense basal ganglia on T1-weighted images in patients receiving parenteral nutrition. Radiology 181:117–120

    Article  CAS  PubMed  Google Scholar 

  35. da Silva CJ, da Rocha AJ, Jeronymo S et al (2007) A preliminary study revealing a new association in patients undergoing maintenance hemodialysis: manganism symptoms and T1 hyperintense changes in the basal ganglia. AJNR Am J Neuroradiol 28:1474–1479

    Article  PubMed  Google Scholar 

  36. Martin-Duverneuil N, Idbaih A, Hoang-Xuan K et al (2006) MRI features of neurodegenerative Langerhans cell histiocytosis. Eur Radiol 16:2074–2082

    Article  CAS  PubMed  Google Scholar 

  37. White GW, Gibby WA, Tweedle MF (2006) Comparison of Gd(DTPA-BMA) (Omniscan) versus Gd(HP-D03A) (ProHance) relative to gadolinium retention in human bone tissue by inductively coupled plasma mass spectroscopy. Investig Radiol 41:272–278

    Article  Google Scholar 

  38. Shellock FG, Kanal E (1999) Safety of magnetic resonance imaging contrast agents. J Magn Reson Imaging 10:477–484

    Article  CAS  PubMed  Google Scholar 

  39. Tweedle MF, Wedeking P, Krishan K (1995) Biodistribution of radiolabeled, formulated gadopentenate, gadoteridol, gadoterate, and gadodiamide in mice and rats. Investig Radiol 30:371–380

    Article  Google Scholar 

Download references


The scientific guarantor of this publication is Prof. Dr. Dragan Stojanov The authors of this manuscript declare no relationships with any companies, whose products or services may be related to the subject matter of the article. The authors state that this work has not received any funding. One of the authors has significant statistical expertise. No complex statistical methods were necessary for this paper. Institutional Review Board approval and written informed consent were not required because the retrospective nature of our clinically acquired data. At the time of the examination, however, all patients had given consent to use their clinical and imaging data for research. Study subjects or cohorts have not been previously reported. Methodology: prospective / retrospective.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Dragan A. Stojanov.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Stojanov, D.A., Aracki-Trenkic, A., Vojinovic, S. et al. Increasing signal intensity within the dentate nucleus and globus pallidus on unenhanced T1W magnetic resonance images in patients with relapsing-remitting multiple sclerosis: correlation with cumulative dose of a macrocyclic gadolinium-based contrast agent, gadobutrol. Eur Radiol 26, 807–815 (2016).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Magnetic resonance imaging
  • Contrast media
  • Globus pallidus
  • Dentate nucleus
  • Gadolinium deposition