Skip to main content
Log in

T2 mapping of CT remodelling patterns in interstitial lung disease

  • Magnetic Resonance
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objectives

To evaluate lung T2 mapping for quantitative characterization and differentiation of ground-glass opacity (GGO), reticulation (RE) and honeycombing (HC) in usual interstitial pneumonia (UIP) and non-specific interstitial pneumonia (NSIP).

Methods

Twelve patients with stable UIP or NSIP underwent thin-section multislice CT and 1.5-T MRI of the lung. A total of 188 regions were classified at CT into normal (n = 29) and pathological areas, including GGO (n = 48), RE (n = 60) and HC (n = 51) predominant lesions. Entire lung T2 maps based on multi-echo single shot TSE sequence (TE: 20, 40, 79, 140, 179 ms) were generated from each subject with breath-holds at end-expiration and ECG-triggering.

Results

The median T2 relaxation of GGO was 67 ms (range 60-72 ms). RE predominant lesions had a median relaxation of 74 ms (range 69-79 ms), while for HC pattern this was 79 ms (range 74-89 ms). The median T2 relaxation for normal lung areas was 41 ms (ranged 38-49 ms), and showed significant difference to pathological areas (p < 0.001). A statistical difference was found between the T2 relaxation of GGO, RE and HC (p < 0.05).

Conclusions

The proposed method provides quantitative information for pattern differentiation, potentially allowing for monitoring of progression and response to treatment, in interstitial lung disease.

Key points

Multi-echo single shot TSE sequence allows for entire lung T2 mapping.

Lung remodelling patterns in ILD show different T2 relaxation.

Quantitative T2 mapping may provide information for monitoring of ILD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

GGO:

Ground-glass opacity

HC:

Honeycombing

ILD:

Interstitial lung disease

NSIP:

Non-specific interstitial pneumonia

RE:

Reticulation

ROI:

Region-of-interest

UIP:

Usual interstitial pneumonia

References

  1. Wallace WA, Fitch PM, Simpson AJ, Howie SE (2007) Inflammation-associated remodelling and fibrosis in the lung - a process and an end point. Int J Exp Pathol 88:103–110

    Article  PubMed Central  PubMed  Google Scholar 

  2. Raghu G, Collard HR, Egan JJ, on behalf of the ATS/ERS/JRS/ALAT Committee on Idiopathic Pulmonary Fibrosis et al (2011) An official ATS/ERS/JRS/ALAT statement: idiopathic pulmonary fibrosis: evidence-based guidelines for diagnosis and management. Am J Respir Crit Care Med 183:788–824

    Article  PubMed  Google Scholar 

  3. Prosch H, Schaefer-Prokop CM, Eisenhuber E, Kienzl D, Herold CJ (2013) CT protocols ininterstitial lung diseases–a survey among members of the European Society of ThoracicImaging and a review of the literature. Eur Radiol 23:1553–1563

    Article  PubMed  Google Scholar 

  4. Ohno Y, Takenaka D, Kanda T et al (2012) Adaptive iterative dose reduction using 3D processing for reduced- and low-dose pulmonary CT: comparison with standard-dose CT for image noise reduction and radiological findings. AJR 199:W477–W485

    Article  PubMed  Google Scholar 

  5. Christe A, Charimo-Torrente J, Roychoudhury K, Vock P, Roos JE (2013) Accuracy of low-dose computed tomography (CT) for detecting and characterizing the most common CT-patterns of pulmonary disease. Eur J Radiol 82:e142–e150

    Article  PubMed  Google Scholar 

  6. Yokoyama A, Kondo K, Nakajima M et al (2006) Prognostic value of circulating KL-6 in idiopathic pulmonary fibrosis. Respirology 11:164–168

    Article  PubMed  Google Scholar 

  7. Richards TJ, Kaminski N, Baribaud F et al (2012) Peripheral blood proteins predict mortality in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 185:67–76

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Walsh SL, Hansell DM (2010) Diffuse interstitial lung disease: overlaps and uncertainties. Eur Radiol 20:1859–1867

    Article  PubMed  Google Scholar 

  9. Schaefer-Prokop C, Prokop M, Fleischmann D, Herold C (2001) High-resolution CT of diffuse interstitial lung disease: key findings in common disorders. Eur Radiol 11:373–392

    Article  CAS  PubMed  Google Scholar 

  10. Engeler CE, Tashjian JH, Trenkner SW, Walsh JW (1993) Ground-glass opacity of the lung parenchyma: a guide to analysis with high-resolution CT. AJR Am J Roentgenol 160:249–251

    Article  CAS  PubMed  Google Scholar 

  11. Gruden JF, Panse PM, Leslie KO, Tazelaar HD, Colby TV (2013) UIP diagnosed at surgical lung biopsy, 2000-2009: HRCT patterns and proposed classification system. AJR Am J Roentgenol 200:W458–W467

    Article  PubMed  Google Scholar 

  12. Jakob PM, Hillenbrand CM, Wang T, Schultz G, Hahn D, Haase A (2001) Rapid quantitative lung (1)H T(1) mapping. J Magn Reson Imaging 14:795–799

    Article  CAS  PubMed  Google Scholar 

  13. Cutillo AG, Chan PH, Ailion DC et al (2002) Characterization of bleomycin lung injury by nuclear magnetic resonance: correlation between NMR relaxation times and lung water and collagen content. Magn Reson Med 47:246–256

    Article  CAS  PubMed  Google Scholar 

  14. Bauman G, Puderbach M, Deimling M et al (2009) Non-contrast-enhanced perfusion and ventilation assessment of the human lung by means of fourier decomposition in proton MRI. Magn Reson Med 62:656–664

    Article  PubMed  Google Scholar 

  15. Hansell DM, Bankier AA, MacMahon H, McLoud TC, Müller NL, Remy J (2008) Fleischner society: glossary of terms for thoracic imaging. Radiology 246:697–722

    Article  PubMed  Google Scholar 

  16. Skalina S, Kundel HL, Wolf G, Marshall B (1984) The effect of pulmonary edema on proton nuclear magnetic resonance relaxation times. Investig Radiol 19:7–9

    Article  CAS  Google Scholar 

  17. Newcomb CH, Van Dyk J, Hill RP (1994) The role of magnetic resonance for assessing radiation-induced lung damage. Int J Radiat Oncol Biol Phys 30:125–132

    Article  CAS  PubMed  Google Scholar 

  18. Jacob RE, Amidan BG, Soelberg J, Minard KR (2010) In vivo MRI of altered proton signal intensity and T2 relaxation in a bleomycin model of pulmonary inflammation and fibrosis. J Magn Reson Imaging 31:1091–1099

    Article  PubMed  Google Scholar 

  19. Estilaei M, MacKay A, Whittall K, Mayo J (1999) In vitro measurements of water content and T2 relaxation times in lung using a clinical MRI scanner. J Magn Reson Imaging 9:699–703

    Article  CAS  PubMed  Google Scholar 

  20. Huber DJ, Kobzik L, Melanson G, Adams DF (1985) The detection of inflammation in collapsed lung by alterations in proton nuclear magnetic relaxation times. Investig Radiol 20:460–464

    Article  CAS  Google Scholar 

  21. Mayo JR, MacKay AL, Whittall KP, Baile EM, Paré PD (1995) Measurement of lung water content and pleural pressure gradient with magnetic resonance imaging. J Thorac Imaging 10:73–81

    Article  CAS  PubMed  Google Scholar 

  22. Cannie M, Jani J, De Keyzer F, Roebben I, Breysem L, Deprest J (2011) T2 quantifications of fetal lungs at MRI-normal ranges. Prenat Diagn 31:705–711

    Article  CAS  PubMed  Google Scholar 

  23. Adams EW, Counsell SJ, Hajnal JV et al (2002) Magnetic resonance imaging of lung water content and distribution in term and preterm infants. Am J Respir Crit Care Med 166:397–402

    Article  PubMed  Google Scholar 

  24. Hatabu H, Alsop DC, Listerud J, Bonnet M, Gefter WB (1999) T2* and proton density measurement of normal human lung parenchyma using submillisecond echo time gradient echo magnetic resonance imaging. Eur J Radiol 29:245–252

    Article  CAS  PubMed  Google Scholar 

  25. Stock KW, Chen Q, Hatabu H, Edelman RR (1999) Magnetic resonance T2* measurements of the normal human lung in vivo with ultra-short echo times. Magn Reson Imaging 17:997–1000

    Article  CAS  PubMed  Google Scholar 

  26. Ohno Y, Nishio M, Koyama H et al (2013) Pulmonary MR imaging with ultra-short TEs: utility for disease severity assessment of connective tissue disease patients. Eur J Radiol 82:1359–1365

    Article  PubMed  Google Scholar 

  27. Stadler A, Jakob PM, Griswold M, Barth M, Bankier AA (2005) T1 mapping of the entire lung parenchyma: influence of the respiratory phase in healthy individuals. J Magn Reson Imaging 21:759–764

    Article  PubMed  Google Scholar 

  28. Stadler A, Jakob PM, Griswold M, Stiebellehner L, Barth M, Bankier AA (2008) T1 mapping of the entire lung parenchyma: influence of respiratory phase and correlation to lung function test results in patients with diffuse lung disease. Magn Reson Med 59:96–101

    Article  PubMed  Google Scholar 

  29. Caravan P, Yang Y, Zachariah R et al (2013) Molecular magnetic resonance imaging of pulmonary fibrosis in mice. Am J Respir Cell Mol Biol 49:1120–1126

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Ohno Y, Koyama H, Yoshikawa T (2011) Pulmonary magnetic resonance imaging for airway diseases. J Thorac Imaging 26:301–316

    Article  PubMed  Google Scholar 

  31. Lutterbey G, Gieseke J, von Falkenhausen M, Morakkabati N, Schild H (2005) Lung MRI at 3.0 T: a comparison of helical CT and high-field MRI in the detection of diffuse lung disease. Eur Radiol 15:324–328

    Article  CAS  PubMed  Google Scholar 

  32. Sung A, Swigris J, Saleh A, Raoof S (2007) High-resolution chest tomography in idiopathic pulmonary fibrosis and nonspecific interstitial pneumonia: utility and challenges. Curr Opin Pulm Med 13:451–457

    Article  PubMed  Google Scholar 

  33. McFadden RG, Carr TJ, Wood TE (1987) Proton magnetic resonance imaging to stage activity of interstitial lung disease. Chest 92:31–39

    Article  CAS  PubMed  Google Scholar 

  34. Felício CH, Parra ER, Capelozzi VL (2007) Idiopathic and collagen vascular disease nonspecific interstitial pneumonia: clinical significance of remodeling process. Lung 185:39–46

    Article  PubMed  Google Scholar 

  35. Mulkern R, Haker S, Mamata H et al (2014) Lung parenchymal signal intensity in MRI: a technical review with educational aspirations regarding reversible versus irreversible transverse relaxation effects in common pulse sequences. Concepts Magn Reson Part A Bridg Educ Res 43A:29–53

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Hatabu H, Gaa J, Tadamura E et al (1999) MR imaging of pulmonary parenchyma with a half-Fourier single-shot turbo spin-echo (HASTE) sequence. Eur J Radiol 29:152–159

    Article  CAS  PubMed  Google Scholar 

  37. Ellis SM, Hansell DM (2002) Idiopathic interstitial pneumonias: imaging-pathology correlation. Eur Radiol 12:610–626

    Article  PubMed  Google Scholar 

  38. Sumikawa H, Johkoh T, Ichikado K et al (2009) Nonspecific interstitial pneumonia: histologic correlation with high-resolution CT in 29 patients. Eur J Radiol 70:35–40

    Article  PubMed  Google Scholar 

  39. Martinez FJ, Flaherty K (2006) Pulmonary function testing in idiopathic interstitial pneumonias. Proc Am Thorac Soc 3:315–321

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the ERASMUS exchange program for PhD students. The scientific guarantor of this publication is Julien Dinkel. The authors of this manuscript declare no relationships with any companies, whose products or services may be related to the subject matter of the article. The authors state that this work has not received any funding. No complex statistical methods were necessary for this paper. Institutional Review Board approval was obtained. Written informed consent was obtained from all subjects (patients) in this study. Methodology: prospective, experimental study, performed at one institution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julien Dinkel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buzan, M.T.A., Eichinger, M., Kreuter, M. et al. T2 mapping of CT remodelling patterns in interstitial lung disease. Eur Radiol 25, 3167–3174 (2015). https://doi.org/10.1007/s00330-015-3751-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-015-3751-y

Keywords

Navigation