Skip to main content

Computed tomography of acute pulmonary embolism: state-of-the-art

Abstract

Multidetector computed tomography (CT) plays an important role in the detection, risk stratification and prognosis evaluation of acute pulmonary embolism. This review will discuss the technical improvements for imaging peripheral pulmonary arteries, the methods of assessing pulmonary embolism severity based on CT findings, a multidetector CT technique for pulmonary embolism detection, and lastly, how to avoid overutilization of CT pulmonary angiography and overdiagnosis of pulmonary embolism.

Key Points

We describe clinical prediction rules and D-dimers for pulmonary embolism evaluation.

Overutilization of CT pulmonary angiography and overdiagnosis of pulmonary embolism should be avoided.

We discuss technical improvements for imaging peripheral pulmonary arteries.

Pulmonary embolism severity can be assessed based on CT findings.

We discuss multidetector CT techniques for pulmonary embolism detection.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Goldhaber SZ, Bounameaux H (2012) Pulmonary embolism and deep vein thrombosis. Lancet 379:1835–1846

    PubMed  Article  Google Scholar 

  2. Pena E, Dennie C (2012) Acute and chronic pulmonary embolism: an in-depth review for radiologists through the use of frequently asked questions. Semin Ultrasound CT MR 33:500–521

    PubMed  Article  Google Scholar 

  3. Sadigh G, Kelly AM, Cronin P (2011) Challenges, controversies, and hot topics in pulmonary embolism imaging. AJR Am J Roentgenol 196:497–515

    PubMed  Article  Google Scholar 

  4. Kumamaru KK, Hunsaker AR, Kumamaru H, George E, Bedayat A, Rybicki FJ (2013) Correlation between early direct communication of positive CT pulmonary angiography findings and improved clinical outcomes. Chest 144:1546–1554

    PubMed  Article  Google Scholar 

  5. Remy-Jardin M, Pistolesi M, Goodman LR et al (2007) Management of suspected acute pulmonary embolism in the era of CT angiography: a statement from the Fleischner Society. Radiology 245:315–329

    PubMed  Article  Google Scholar 

  6. Konstantinides SV, Torbicki A, Agnelli G et al (2014) 2014 ESC guidelines on the diagnosis and management of acute pulmonary embolism. Eur Heart J 35:3033–3069, 3069a-3069k

    PubMed  Article  Google Scholar 

  7. Mamlouk MD, van Sonnenberg E, Gosalia R et al (2010) Pulmonary embolism at CT angiography: implications for appropriateness, cost, and radiation exposure in 2003 patients. Radiology 256:625–632

    PubMed  Article  Google Scholar 

  8. den Exter PL, van der Hulle T, Klok FA, Huisman MV (2011) Advances in the diagnosis and management of acute pulmonary embolism. Thromb Res 133(Suppl 2):S10–S16

    Google Scholar 

  9. Lu GM, Zhao Y, Zhang LJ, Schoepf UJ (2012) Dual-energy CT of the lung. AJR Am J Roentgenol 199:S40–S53

    PubMed  Article  Google Scholar 

  10. Bettmann MA, Baginski SG, White RD et al (2012) ACR Appropriateness Criteria® acute chest pain–suspected pulmonary embolism. J Thorac Imaging 27:W28–W31

    PubMed  Article  Google Scholar 

  11. Zhang LJ, Zhang Z, Li SJ et al (2014) Pulmonary embolism and renal vein thrombosis in patients with nephrotic syndrome: Prospective evaluation of prevalence and risk factors with CT. Radiology 273:897–906

    PubMed  Article  Google Scholar 

  12. Pasha SM, Klok FA, Snoep JD et al (2010) Safety of excluding acute pulmonary embolism based on an unlikely clinical probability by the Wells rule and normal D-dimer concentration: a meta-analysis. Thromb Res 125:e123–e127

    CAS  PubMed  Article  Google Scholar 

  13. van Belle A, Buller HR, Huisman MV et al (2006) Effectiveness of managing suspected pulmonary embolism using an algorithm combining clinical probability, D-dimer testing, and computed tomography. JAMA 295:172–179

    PubMed  Article  Google Scholar 

  14. Carrier M, Righini M, Djurabi RK et al (2009) VIDAS D-dimer in combination with clinical pre-test probability to rule out pulmonary embolism. A systematic review of management outcome studies. Thromb Haemost 101:886–892

    CAS  PubMed  Google Scholar 

  15. Righini M, Van Es J, Den Exter PL et al (2014) Age-adjusted D-dimer cutoff levels to rule out pulmonary embolism: the ADJUST-PE study. JAMA 311:1117–1124

    CAS  PubMed  Article  Google Scholar 

  16. Schoepf UJ, Costello P (2004) CT Angiography for diagnosis of pulmonary embolism: State of the art. Radiology 230:329–337

    PubMed  Article  Google Scholar 

  17. Adams DM, Stevens SM, Woller SC et al (2013) Adherence to PIOPED II investigators' recommendations for computed tomography pulmonary angiography. Am J Med 126:36–42

    PubMed  Article  Google Scholar 

  18. Stein PD, Woodard PK, Weg JG et al (2007) Diagnostic pathways in acute pulmonary embolism: recommendations of the PIOPED II Investigators. Radiology 242:15–21

    PubMed  Article  Google Scholar 

  19. HuismanMV KFA (2013) How I diagnose acute pulmonary embolism. Blood 121:4443–4448

    Article  Google Scholar 

  20. Burge AJ, Freeman KD, Klapper PJ, Haramati LB (2008) Increased diagnosis of pulmonary embolism without a corresponding decline in mortality during the CT era. Clin Radiol 63:381–386

    CAS  PubMed  Article  Google Scholar 

  21. Walter LC, Schonberg MA (2014) Screening mammography in older women: a review. JAMA 311:1336–1347

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  22. Stein PD, Goodman LR, Hull RD, Dalen JE, Matta F (2012) Diagnosis and management of isolated subsegmental pulmonary embolism: review and assessment of the options. Clin Appl Thromb Hemost 18:20–26

    PubMed  Article  Google Scholar 

  23. Remy-Jardin M, Pontana F, Faivre JB et al (2014) New insights in thromboembolic disease. Radiol Clin N Am 52:183–193

    PubMed  Article  Google Scholar 

  24. Perrier A, Roy PM, Sanchez O et al (2005) Multidetector-row computed tomography in suspected pulmonary embolism. N Engl J Med 352:1760–1768

    CAS  PubMed  Article  Google Scholar 

  25. Becattini C, Agnelli G, Vedovati MC et al (2011) Multidetector computed tomography for acute pulmonary embolism: diagnosis and risk stratification in a single test. Eur Heart J 32:1657–1663

    PubMed  Article  Google Scholar 

  26. Becattini C, Agnelli G, Germini F, Vedovati MC (2014) Computed tomography to assess risk of death in acute pulmonary embolism: a meta-analysis. Eur Respir J 43:1678–1690

    PubMed  Article  Google Scholar 

  27. Trujillo-Santos J, den Exter PL, Gómez V et al (2013) Computed tomography-assessed right ventricular dysfunction and risk stratification of patients with acute non-massive pulmonary embolism: systematic review and meta-analysis. J Thromb Haemost 11:1823–1832

    CAS  PubMed  Google Scholar 

  28. Schoepf UJ, Kucher N, Kipfmueller F, Quiroz R, Costello P, Goldhaber SZ (2004) Right ventricular enlargement on chest computed tomography: a predictor of early death in acute pulmonary embolism. Circulation 110:3276–3280

    PubMed  Article  Google Scholar 

  29. Kang DK, Thilo C, Schoepf UJ et al (2011) CT signs of right ventricular dysfunction: prognostic role in acute pulmonary embolism. JACC Cardiovasc Imaging 4:841–849

    PubMed  Article  Google Scholar 

  30. Ghaye B, Ghuysen A, Bruyere PJ, D'Orio V, Dondelinger RF (2006) Can CT pulmonary angiography allow assessment of severity and prognosis in patients presenting with pulmonary embolism? What the radiologist needs to know. Radiographics 26:23–39

    PubMed  Article  Google Scholar 

  31. Henzler T, Roeger S, Meyer M et al (2012) Pulmonary embolism: CT signs and cardiac biomarkers for predicting right ventricular dysfunction. Eur Respir J 39:919–926

    CAS  PubMed  Article  Google Scholar 

  32. Furlan A, Aghayev A, Chang CC et al (2012) Short-term mortality in acute pulmonary embolism: clot burden and signs of right heart dysfunction at CT pulmonary angiography. Radiology 265:283–293

    PubMed Central  PubMed  Article  Google Scholar 

  33. Qanadli SD, El Hajjam M, Vieillard-Baron A et al (2001) New CT index to quantify arterial obstruction in pulmonary embolism: comparison with angiographic index and echocardiography. AJR Am J Roentgenol 176:1415–1420

    CAS  PubMed  Article  Google Scholar 

  34. Mastora I, Remy-Jardin M, Masson P et al (2003) Severity of acute pulmonary embolism: evaluation of a new spiral CT angiographic score in correlation with echocardiographic data. Eur Radiol 13:29–35

    PubMed  Article  Google Scholar 

  35. Araoz PA, Gotway MB, Trowbridge RL et al (2003) Helical CT pulmonary angiography predictors of in-hospital morbidity and mortality in patients with acute pulmonary embolism. J Thorac Imaging 18:207–216

    PubMed  Article  Google Scholar 

  36. Vedovati MC, Germini F, Agnelli G, Becattini C (2013) Prognostic role of embolic burden assessed at computed tomography angiography in patients with acute pulmonary embolism: systematic review and meta-analysis. J Thromb Haemost 11:2092–2102

    CAS  PubMed  Article  Google Scholar 

  37. Chae EJ, Seo JB, Jang YM et al (2010) Dual-energy CT for assessment of the severity of acute pulmonary embolism: pulmonary perfusion defect score compared with CT angiographic obstruction score and right ventricular/left ventricular diameter ratio. AJR Am J Roentgenol 194:604–610

    PubMed  Article  Google Scholar 

  38. Thieme SF, Ashoori N, Bamberg F et al (2012) Severity assessment of pulmonary embolism using dual energy CT - correlation of a pulmonary perfusion defect score with clinical and morphological parameters of blood oxygenation and right ventricular failure. Eur Radiol 22:269–278

    PubMed  Article  Google Scholar 

  39. Zhou Y, Shi H, Wang Y, Kumar AR, Chi B, Han P (2012) Assessment of correlation between CT angiographic clot load score, pulmonary perfusion defect score and global right ventricular function with dual-source CT for acute pulmonary embolism. Br J Radiol 85:972–979

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  40. Bauer RW, Frellesen C, Renker M et al (2011) Dual energy CT pulmonary blood volume assessment in acute pulmonary embolism - correlation with D-dimer level, right heart strain and clinical outcome. Eur Radiol 21:1914–1921

    PubMed  Article  Google Scholar 

  41. Apfaltrer P, Bachmann V, Meyer M et al (2012) Prognostic value of perfusion defect volume at dual energy CTA in patients with pulmonary embolism: correlation with CTA obstruction scores, CT parameters of right ventricular dysfunction and adverse clinical outcome. Eur J Radiol 81:3592–3597

    PubMed  Article  Google Scholar 

  42. Meinel FG, Graef A, Bamberg F et al (2013) Effectiveness of automated quantification of pulmonary perfused blood volume using dual-energy CTPA for the severity assessment of acute pulmonary embolism. Invest Radiol 48:563–569

    CAS  PubMed  Article  Google Scholar 

  43. Wildberger JE, Schoepf UJ, Mahnken AH et al (2005) Approaches to CT perfusion imaging in pulmonary embolism. Semin Roentgenol 40:64–73

    PubMed  Article  Google Scholar 

  44. Wittenberg R, Berger FH, Peters JF et al (2012) Acute pulmonary embolism: effect of a computer-assisted detection prototype on diagnosis—an observer study. Radiology 262:305–313

    PubMed  Article  Google Scholar 

  45. Blackmon KN, Florin C, Bogoni L et al (2011) Computer-aided detection of pulmonary embolism at CT pulmonary angiography: can it improve performance of inexperienced readers? Eur Radiol 21:1214–1223

    PubMed  Article  Google Scholar 

  46. Wittenberg R, Peters JF, Sonnemans JJ, Bipat S, Prokop M, Schaefer-Prokop CM (2011) Impact of image quality on the performance of computer-aided detection of pulmonary embolism. AJR Am J Roentgenol 196:95–101

    PubMed  Article  Google Scholar 

  47. Kligerman SJ, Lahiji K, Galvin JR, Stokum C, White CS (2014) Missed pulmonary emboli on CT angiography: assessment with pulmonary embolism-computer-aided detection. AJR Am J Roentgenol 202:65–73

    PubMed  Article  Google Scholar 

  48. Lahiji K, Kligerman S, Jeudy J, White C (2014) Improved accuracy of pulmonary embolism computer-aided detection using iterative reconstruction compared with filtered back projection. AJR Am J Roentgenol 203:763–771

    PubMed  Article  Google Scholar 

  49. Herzog P, Wildberger JE, Niethammer M, Schaller S, Schoepf UJ (2003) CT perfusion imaging of the lung in pulmonary embolism. Acad Radiol 10:1132–1146

    PubMed  Article  Google Scholar 

  50. Schoepf UJ, Bruening R, Konschitzky H et al (2000) Pulmonary embolism: comprehensive diagnosis by using electron-beam CT for detection of emboli and assessment of pulmonary blood flow. Radiology 217:693–700

    CAS  PubMed  Article  Google Scholar 

  51. Thieme SF, Johnson TR, Lee C et al (2009) Dual-energy CT for the assessment of contrast material distribution in the pulmonary parenchyma. AJR Am J Roentgenol 193:144–149

    PubMed  Article  Google Scholar 

  52. Fink C, Johnson TR, Michaely HJ et al (2008) Dual-energy CT angiography of the lung in patients with suspected pulmonary embolism: initial results. Röfo 180:879–883

    CAS  PubMed  Google Scholar 

  53. Pontana F, Faivre JB, Remy-Jardin M et al (2008) Lung perfusion with dual-energy multidetector-row CT (MDCT): feasibility for the evaluation of acute pulmonary embolism in 117 consecutive patients. Acad Radiol 15:1494–1504

    PubMed  Article  Google Scholar 

  54. Thieme SF, Becker CR, Hacker M, Nikolaou K, Reiser MF, Johnson TR (2008) Dual energy CT for the assessment of lung perfusion–correlation to scintigraphy. Eur J Radiol 68:369–374

    PubMed  Article  Google Scholar 

  55. Zhang LJ, Yang GF, Zhao YE, Zhou CS, Lu GM (2009) Detection of pulmonary embolism using dual-energy computed tomography and correlation with cardiovascular measurements: a preliminary study. Acta Radiol 50:892–901

    PubMed  Article  Google Scholar 

  56. Zhang LJ, Zhao YE, Wu SY et al (2009) Pulmonary embolism detection with dual-energy CT: experimental study of dual-source CT in rabbits. Radiology 252:61–70

    PubMed  Article  Google Scholar 

  57. Zhang LJ, Chai X, Wu SY et al (2009) Detection of pulmonary embolism by dual energy CT: correlation with perfusion scintigraphy and histopathological findings in rabbits. Eur Radiol 19:2844–2854

    PubMed  Article  Google Scholar 

  58. Kang MJ, Park CM, Lee CH, Goo JM, Lee HJ (2010) Dual-energy CT: clinical applications in various pulmonary diseases. Radiographics 30:685–698

    PubMed  Article  Google Scholar 

  59. Zhang LJ, Zhou CS, Lu GM (2012) Dual energy computed tomography demonstrated lung ventilation/perfusion mismatch in a 19-year-old patient with pulmonary embolism. Circulation 126:2441–2443

    PubMed  Article  Google Scholar 

  60. Zhang LJ, Zhou CS, Schoepf UJ et al (2013) Dual-energy CT lung ventilation/perfusion imaging for diagnosing pulmonary embolism. Eur Radiol 23:2666–2675

    PubMed  Article  Google Scholar 

  61. Kong X, Sheng HX, Lu GM et al (2014) Xenon-enhanced dual-energy CT lung ventilation imaging: techniques and clinical applications. AJR Am J Roentgenol 202:309–317

    PubMed  Article  Google Scholar 

  62. Zhang LJ, Wang ZJ, Zhou CS, Lu L, Luo S, Lu GM (2012) Evaluation of pulmonary embolism in pediatric patients with nephrotic syndrome with dual energy CT pulmonary angiography. Acad Radiol 19:341–348

    PubMed  Article  Google Scholar 

  63. Lee CW, Seo JB, Song JW et al (2011) Evaluation of computer-aided detection and dual energy software in detection of peripheral pulmonary embolism on dual-energy pulmonary CT angiography. Eur Radiol 21:54–62

    PubMed  Article  Google Scholar 

  64. Krissak R, Henzler T, Reichert M, Krauss B, Schoenberg SO, Fink C (2010) Enhanced visualization of lung vessels for diagnosis of pulmonary embolism using dual energy CT angiography. Invest Radiol 45:341–346

    PubMed  Google Scholar 

  65. Tang CX, Zhang LJ, Han ZH et al (2013) Dual-energy CT based vascular iodine analysis improves sensitivity for peripheral pulmonary artery thrombus detection: an experimental study in canines. Eur J Radiol 82:2270–2278

    PubMed  Article  Google Scholar 

  66. Sarma A, Heilbrun ME, Conner KE, Stevens SM, Woller SC, Elliott CG (2012) Radiation and chest CT scan examinations: what do we know? Chest 142:750–760

    PubMed  Article  Google Scholar 

  67. Mayo J, Thakur Y (2013) Pulmonary CT angiography as first-line imaging for PE: image quality and radiation dose considerations. AJR Am J Roentgenol 200:522–528

    PubMed  Article  Google Scholar 

  68. Faggioni L, Neri E, Sbragia P et al (2012) 80-kV pulmonary CT angiography with 40 mL of iodinated contrast material in lean patients: comparison of vascular enhancement with iodixanol (320 mg I/mL) and iomeprol (400 mg I/mL). AJR Am J Roentgenol 199:1220–1225

    PubMed  Article  Google Scholar 

  69. Schueller-Weidekamm C, Schaefer-Prokop CM, Weber M, Herold CJ, Prokop M (2006) CT angiography of pulmonary arteries to detect pulmonary embolism: improvement of vascular enhancement with low kilovoltage settings. Radiology 241:899–907

    PubMed  Article  Google Scholar 

  70. Szucs-Farkas Z, Schibler F, Cullmann J et al (2011) Diagnostic accuracy of pulmonary CT angiography at low tube voltage: intraindividual comparison of a normal-dose protocol at 120 kVp and a low-dose protocol at 80 kVp using reduced amount of contrast medium in a simulation study. AJR Am J Roentgenol 197:W852–W859

    PubMed  Article  Google Scholar 

  71. Fanous R, Kashani H, Jimenez L, Murphy G, Paul NS (2012) Image quality and radiation dose of pulmonary CT angiography performed using 100 and 120 kVp. AJR Am J Roentgenol 199:990–996

    PubMed  Article  Google Scholar 

  72. Sodickson A, Weiss M (2012) Effects of patient size on radiation dose reduction and image quality in low-kVp CT pulmonary angiography performed with reduced IV contrast dose. Emerg Radiol 19:437–445

    PubMed  Article  Google Scholar 

  73. Krazinski AW, Meinel FG, Schoepf UJ et al (2014) Reduced radiation dose and improved image quality at cardiovascular CT angiography by automated attenuation-based tube voltage selection: Intra-individual comparison. Eur Radiol 24:2677–2684

    PubMed  Article  Google Scholar 

  74. Hou DJ, Tso DK, Davison C et al (2013) Clinical utility of ultra high pitch dual source thoracic CT imaging of acute pulmonary embolism in the emergency department: are we one step closer towards a non-gated triple rule out? Eur J Radiol 82:1793–1798

    PubMed  Article  Google Scholar 

  75. Lu GM, Luo S, Meinel FG et al (2014) High-pitch computed tomography pulmonary angiography with iterative reconstruction at 80 kVp and 20 mL contrast agent volume. Eur Radiol 24:3260–3268

    PubMed  Article  Google Scholar 

  76. Meinel FG, Canstein C, Schoepf UJ et al (2014) (2014) Image quality and radiation dose of low tube voltage 3rd generation dual-source coronary CT angiography in obese patients: a phantom study. Eur Radiol 24:1643–1650

    PubMed  Article  Google Scholar 

  77. Katzberg RW, Newhouse JH (2010) Intravenous contrast medium-induced nephrotoxicity: is the medical risk really as great as we have come to believe? Radiology 256:21–28

    PubMed  Article  Google Scholar 

  78. Meinel FG, De Cecco CN, Schoepf UJ, Katzberg R (2014) Contrast-induced acute kidney injury: Definition, epidemiology, and outcome. Biomed Res Int 2014:859328

    PubMed Central  PubMed  Article  Google Scholar 

  79. Pontana F, Pagniez J, Duhamel A et al (2013) Reduced-dose low-voltage chest CT angiography with sinogram-affirmed iterative reconstruction versus standard-dose filtered back projection. Radiology 267:609–618

    PubMed  Article  Google Scholar 

  80. Zhang LJ, Qi L, Wang J et al (2014) Feasibility of prospectively ECG-triggered high-pitch coronary CT angiography with 30 mL iodinated contrast agent at 70 kVp: initial experience. Eur Radiol 24:1537–1546

    PubMed  Article  Google Scholar 

  81. Kaul D, Grupp U, Kahn J et al (2014) Reducing radiation dose in the diagnosis of pulmonary embolism using adaptive statistical iterative reconstruction and lower tube potential in computed tomography. Eur Radiol 24:2685–2691

    PubMed  Article  Google Scholar 

  82. Szucs-Farkas Z, Megyeri B, Christe A, Vock P, Heverhagen JT, Schindera ST (2014) Prospective randomised comparison of diagnostic confidence and image quality with normal-dose and low-dose CT pulmonary angiography at various body weights. Eur Radiol 24:1868–1877

    PubMed  Article  Google Scholar 

  83. Yuan R, Shuman WP, Earls JP et al (2012) Reduced iodine load at CT pulmonary angiography with dual-energy monochromatic imaging: comparison with standard CT pulmonary angiography–a prospective randomized trial. Radiology 262:290–297

    PubMed  Article  Google Scholar 

  84. Delesalle MA, Pontana F, Duhamel A et al (2013) Spectral optimization of chest CT angiography with reduced iodine load: experience in 80 patients evaluated with dual-source, dual-energy CT. Radiology 267:256–266

    PubMed  Article  Google Scholar 

  85. Apfaltrer P, Sudarski S, Schneider D et al (2014) Value of monoenergetic low-kV dual energy CT datasets for improved image quality of CT pulmonary angiography. Eur J Radiol 83:322–328

    PubMed  Article  Google Scholar 

  86. Saade C, Bourne R, El-Merhi F, Somanathan A, Chakraborty D, Brennan P (2013) An optimised patient-specific approach to administration of contrast agent for CT pulmonary angiography. Eur Radiol 23:3205–3212

    PubMed  Article  Google Scholar 

Download references

Acknowledgments

The scientific guarantor of this publication is Long Jiang Zhang. The authors of this manuscript declare relationships with the following companies: UJS is a consultant for and receives research support from Bayer, Bracco, GE, Medrad, and Siemens. The other authors have no conflicts of interest to declare. This study has received funding by Program for New Century Excellent Talents in University (NCET-12-0260 to L.J.Z.). No complex statistical methods were necessary for this paper. Institutional Review Board approval was not obtained because this is a review paper. Written informed consent was not obtained because this is a review paper. No study subjects or cohorts have been previously reported. Methodology: performed at one institution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Long Jiang Zhang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, L.J., Lu, G.M., Meinel, F.G. et al. Computed tomography of acute pulmonary embolism: state-of-the-art. Eur Radiol 25, 2547–2557 (2015). https://doi.org/10.1007/s00330-015-3679-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-015-3679-2

Keywords

  • Pulmonary embolism
  • Tomography
  • X-ray-computed
  • Angiography
  • Prognosis
  • Low radiation dose