Skip to main content

Advertisement

Log in

Investigation of Apparent Diffusion Coefficient from Ultra-high b-Values in Parkinson’s Disease

  • Neuro
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objectives

To assess brain damage in Parkinson’s disease (PD) based on apparent diffusion coefficient (ADC) data obtained from ultra-high b-values.

Methods

Eighteen PD patients and 18 controls received diffusion-weighted imaging (DWI) with standard b-values (0, 1,000 s/mm2) and 15 b-values (0–5,000 s/mm2). Standard ADC (ADCst) maps were calculated from standard b-values, while maps of pure diffusion coefficients (D), pseudo-diffusion coefficients (D*), and ultra-high ADCs (ADCuh) were calculated from the 15 b-values using a tri-component model. In this model, D and D* values were quantified with a bi-exponential equation using b-values less than 2,000 s/mm2, while ADCuh was quantified by fitting the signals at ultra-high b-values (2,000–5,000 s/mm2) to the mono-exponential equation. ADCst, ADCuh, D, and D* of the globus pallidus (GP), putamen (P), and substantia nigra (SN) were compared between PD patients and normal control subjects.

Results

ADCuh of the GP, P, and SN was significantly lower in PD patients than those in control subjects (P < 0.001), while ADCst, D, and D* of the GP, P and SN were not different between the two groups (P > 0.05).

Conclusions

ADCuh may be a useful measurement for evaluating brain damage in PD patients.

Key Points

DWI with ultra-high b-values may provide new insight into Parkinsons disease pathology

ADC calculated using ultra-high b-values is different between PD and controls

ADC uh may be associated with water transportation by aquaporins

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

3D BRAVO:

three-dimensional brain volume imaging

ADC:

apparent diffusion coefficient

ADCst :

ADC calculated using standard b-values

ADCuh :

ADC calculated using ultra-high b-values

BA:

Bland–Altman

D:

pure diffusion coefficient

D* :

pseudo-diffusion coefficient

DWI:

diffusion weighted imaging

ECS:

extracellular compartment space

FOV:

field of view

FSE:

axial fast spin-echo

HY:

Hoehn and Yahr staging scale

ICC:

intraclass correlation

LOA:

limits of agreement

MD:

mean diffusivity

MSA:

multiple system atrophy

MSA-C:

MSA with predominant cerebellar dysfunction

MSA-P:

MSA with predominant Parkinsonism

PD:

Parkinson’s disease

ROI:

region of interest

TE:

echo time

TR:

repetition time

T2FLAIR:

T2 fluid attenuation inversion recovery

T2WI:

T2-weighted imaging

UPDRS:

Unified Parkinson’s Disease Rating Scale

SD:

standard deviation

References

  1. Chen NC, Huang CW, Lui CC et al (2013) Diffusion-weighted imaging improves prediction in cognitive outcome and clinical phases in patients with carbon monoxide intoxication. Neuroradiology 55:107–115

    Article  PubMed  Google Scholar 

  2. Kang Y, Choi SH, Kim YJ et al (2011) Gliomas: Histogram analysis of apparent diffusion coefficient maps with standard- or high-b-value diffusion-weighted MR imaging–correlation with tumor grade. Radiology 261:882–890

    Article  PubMed  Google Scholar 

  3. Maier SE, Sun Y, Mulkern RV (2010) Diffusion imaging of brain tumors. NMR Biomed 23:849–864

    Article  PubMed Central  PubMed  Google Scholar 

  4. Kobayashi S, Koga F, Yoshida S et al (2011) Diagnostic performance of diffusion-weighted magnetic resonance imaging in bladder cancer: potential utility of apparent diffusion coefficient values as a biomarker to predict clinical aggressiveness. Eur Radiol 21:2178–2186

    Article  PubMed  Google Scholar 

  5. Le Bihan D, Breton E, Lallemand D, Aubin ML, Vignaud J, Laval-Jeantet M (1988) Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology 168:497–505

    Article  PubMed  Google Scholar 

  6. Chiaradia M, Baranes L, Van Nhieu JT et al (2014) Intravoxel incoherent motion (IVIM) MR imaging of colorectal liver metastases: are we only looking at tumor necrosis? J Magn Reson Imaging 39:317–325

    Article  PubMed  Google Scholar 

  7. Federau C, Maeder P, O'Brien K, Browaeys P, Meuli R, Hagmann P (2012) Quantitative measurement of brain perfusion with intravoxel incoherent motion MR imaging. Radiology 265:874–881

    Article  PubMed  Google Scholar 

  8. Sigmund EE, Vivier PH, Sui D et al (2012) Intravoxel incoherent motion and diffusion-tensor imaging in renal tissue under hydration and furosemide flow challenges. Radiology 263:758–769

    Article  PubMed  Google Scholar 

  9. Catalano OA, Choy G, Zhu A, Hahn PF, Sahani DV (2010) Differentiation of malignant thrombus from bland thrombus of the portal vein in patients with hepatocellular carcinoma: application of diffusion-weighted MR imaging. Radiology 254:154–162

    Article  PubMed  Google Scholar 

  10. Lai V, Li X, Lee VH, Lam KO, Chan Q, Khong PL (2013) Intravoxel incoherent motion MR imaging: comparison of diffusion and perfusion characteristics between nasopharyngeal carcinoma and post-chemoradiation fibrosis. Eur Radiol 23:2793–2801

    Article  PubMed  Google Scholar 

  11. Le Bihan D (2013) Apparent diffusion coefficient and beyond: what diffusion MR imaging can tell us about tissue structure. Radiology 268:318–322

    Article  PubMed  Google Scholar 

  12. Kong L, Lian G, Zheng W, Liu H, Zhang H, Chen R (2013) Effect of alcohol on diffuse axonal injury in rat brainstem: diffusion tensor imaging and aquaporin-4 expression study. Biomed Res Int 2013:798261

    PubMed Central  PubMed  Google Scholar 

  13. Yao X, Derugin N, Manley GT, Verkman AS (2015) Reduced brain edema and infarct volume in aquaporin-4 deficient mice after transient focal cerebral ischemia. Neurosci Lett 584:368–372

    Article  CAS  PubMed  Google Scholar 

  14. Katahira K, Takahara T, Kwee TC et al (2011) Ultra-high-b-value diffusion-weighted MR imaging for the detection of prostate cancer: evaluation in 201 cases with histopathological correlation. Eur Radiol 21:188–196

    Article  PubMed  Google Scholar 

  15. Bano S, Waraich MM, Khan MA, Buzdar SA, Manzur S (2013) Diagnostic value of apparent diffusion coefficient for the accurate assessment and differentiation of intracranial meningiomas. Acta Radiol Short Rep 2:2047981613512484

    PubMed Central  PubMed  Google Scholar 

  16. Degirmenci B, Yaman M, Haktanir A, Albayrak R, Acar M, Caliskan G (2007) The effects of levodopa use on diffusion coefficients in various brain regions in Parkinson's disease. Neurosci Lett 416:294–298

    Article  CAS  PubMed  Google Scholar 

  17. Tsukamoto K, Matsusue E, Kanasaki Y et al (2012) Significance of apparent diffusion coefficient measurement for the differential diagnosis of multiple system atrophy, progressive supranuclear palsy, and Parkinson's disease: evaluation by 3.0-T MR imaging. Neuroradiology 54:947–955

    Article  PubMed  Google Scholar 

  18. Chan LL, Ng KM, Rumpel H, Fook-Chong S, Li HH, Tan EK (2014) Transcallosal diffusion tensor abnormalities in predominant gait disorder parkinsonism. Parkinsonism Relat Disord 20:53–59

    Article  PubMed  Google Scholar 

  19. Hughes AJ, Daniel SE, Kilford L, Lees AJ (1992) Accuracy of clinical diagnosis of idiopathic Parkinson's disease: a clinico-pathological study of 100 cases. J Neurol Neurosurg Psychiatry 55:181–184

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Hoehn MM, Yahr MD (1967) Parkinsonism: onset, progression and mortality. Neurology 17:427–442

    Article  CAS  PubMed  Google Scholar 

  21. Massano J, Bhatia KP (2012) Clinical approach to Parkinson's disease: features, diagnosis, and principles of management. Cold Spring Harb Perspect Med 2:a008870

    Article  PubMed Central  PubMed  Google Scholar 

  22. Fearnley JM, Lees AJ (1991) Ageing and Parkinson's disease: substantia nigra regional selectivity. Brain 114(Pt 5):2283–2301

    Article  PubMed  Google Scholar 

  23. Obeso JA, Rodriguez-Oroz MC, Rodriguez M et al (2000) Pathophysiology of the basal ganglia in Parkinson's disease. Trends Neurosci 23:S8–S19

    Article  CAS  PubMed  Google Scholar 

  24. Aquino D, Contarino V, Albanese A et al (2014) Substantia nigra in Parkinson's disease: a multimodal MRI comparison between early and advanced stages of the disease. Neurol Sci 35:753–758

    Article  PubMed  Google Scholar 

  25. Schwarz ST, Abaei M, Gontu V, Morgan PS, Bajaj N, Auer DP (2013) Diffusion tensor imaging of nigral degeneration in Parkinson's disease: A region-of-interest and voxel-based study at 3 T and systematic review with meta-analysis. Neuroimage Clin 3:481–488

    Article  PubMed Central  PubMed  Google Scholar 

  26. Chan LL, Rumpel H, Yap K et al (2007) Case control study of diffusion tensor imaging in Parkinson's disease. J Neurol Neurosurg Psychiatry 78:1383–1386

    Article  PubMed Central  PubMed  Google Scholar 

  27. Chu HH, Choi SH, Ryoo I et al (2013) Differentiation of true progression from pseudoprogression in glioblastoma treated with radiation therapy and concomitant temozolomide: comparison study of standard and high-b-value diffusion-weighted imaging. Radiology 269:831–840

    Article  PubMed  Google Scholar 

  28. Badaut J, Ashwal S, Adami A et al (2011) Brain water mobility decreases after astrocytic aquaporin-4 inhibition using RNA interference. J Cereb Blood Flow Metab 31:819–831

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Tourdias T, Dragonu I, Fushimi Y et al (2009) Aquaporin 4 correlates with apparent diffusion coefficient and hydrocephalus severity in the rat brain: a combined MRI-histological study. Neuroimage 47:659–666

    Article  PubMed  Google Scholar 

  30. Amiry-Moghaddam M, Lindland H, Zelenin S et al (2005) Brain mitochondria contain aquaporin water channels: evidence for the expression of a short AQP9 isoform in the inner mitochondrial membrane. FASEB J 19:1459–1467

    Article  CAS  PubMed  Google Scholar 

  31. Chi Y, Fan Y, He L et al (2011) Novel role of aquaporin-4 in CD4+ CD25+ T regulatory cell development and severity of Parkinson's disease. Aging Cell 10:368–382

    Article  CAS  PubMed  Google Scholar 

  32. Umemura A, Oeda T, Hayashi R et al (2013) Diagnostic accuracy of apparent diffusion coefficient and 123I-metaiodobenzylguanidine for differentiation of multiple system atrophy and Parkinson's disease. PLoS One 8:e61066

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Nicoletti G, Lodi R, Condino F et al (2006) Apparent diffusion coefficient measurements of the middle cerebellar peduncle differentiate the Parkinson variant of MSA from Parkinson's disease and progressive supranuclear palsy. Brain 129:2679–2687

    Article  PubMed  Google Scholar 

  34. Michaeli S, Oz G, Sorce DJ et al (2007) Assessment of brain iron and neuronal integrity in patients with Parkinson's disease using novel MRI contrasts. Mov Disord 22:334–340

    Article  PubMed  Google Scholar 

  35. Vaillancourt DE, Spraker MB, Prodoehl J et al (2009) High-resolution diffusion tensor imaging in the substantia nigra of de novo Parkinson’s disease. Neurology 72:1378–1384

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Hyare H, Thornton J, Stevens J et al (2010) High-b-value diffusion MR imaging and basal nuclei apparent diffusion coefficient measurements in variant and sporadic Creutzfeldt-Jakob disease. AJNR Am J Neuroradiol 31:521–526

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The scientific guarantor of this publication is Huangli. Dr. Zhang Zhongping and Dr. Zhao Zhoushe declare relationships with the following companies: General Electric Healthcare China. The study has received funding by the Guangzhou Science and Technique Program of China (No. 2012j4300077). No complex statistical methods were necessary for this paper. Institutional review board approval was obtained. Written informed consent was obtained from all patients in this study. Methodology: prospective case-control study, performed at one institution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huang Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xueying, L., Zhongping, Z., Zhoushe, Z. et al. Investigation of Apparent Diffusion Coefficient from Ultra-high b-Values in Parkinson’s Disease. Eur Radiol 25, 2593–2600 (2015). https://doi.org/10.1007/s00330-015-3678-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-015-3678-3

Keywords

Navigation