Skip to main content

Advertisement

Log in

Photoacoustic breast tomography prototypes with reported human applications

  • Molecular Imaging
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objectives

Photoacoustic breast tomography could provide optical molecular imaging with near-infrared light at sonographic image resolution by utilizing the photoacoustic effect. This review summarizes reports about current prototypes that were applied in vivo in humans.

Methods

Four databases were searched for reports about prototypes of photoacoustic breast tomography that were tested in vivo in humans. Data extracted from the reports comprised details about system design, phantom studies, and clinical studies.

Results

Five prototypes were included. System designs comprised planar, hemicylindrical and hemispherical geometries. In total, 52 of 61 breast cancers (85 %) were detected by three of the prototypes, showing image details such as ring-pattern of the haemoglobin-rich tumour vasculature. A refined prototype provided submillimetre resolution at a good contrast-to-noise ratio up to a depth of about 5 cm in a cup-shaped breast configuration. Another novel prototype demonstrated that in the mammographic imaging geometry, the total imaging depth approximately duplicates with bilateral laser illumination. Most prototypes focused on detecting elevated haemoglobin content related to tumours, but proof-of-principle was also given for multispectral optoacoustic tomography by additional imaging of tissue oxygenation.

Conclusions

Photoacoustic breast tomography can detect breast cancer. This radiation-free molecular imaging technology should be further refined and studied for clinical applications.

Key Points

Photoacoustics combines optical imaging with sonographic signal detection.

Photoacoustic tomography could provide molecular imaging at high image resolution.

Prototypes have been designed for human breast cancer imaging.

Preliminary evaluation studies show that photoacoustic tomography detects breast cancer.

This radiation-free method should be further improved and studied for clinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig 1
Fig 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

DOT:

Diffuse optical tomography

MSOT:

Multispectral optoacoustic tomography

NIR:

Near-infrared

PAT:

Photoacoustic tomography

PAM:

Photoacoustic mammography

References

  1. Kreienberg R, Kopp I, Albert U et al (2008) German Cancer Society and German Society for Gynecology and Obstetrics. Interdisciplinary S3 guidelines for the diagnosis, treatment and follow-up care of breast cancer, 1st updated version 2008. ISBN 978-3-88603-948-7

  2. Youlden DR, Cramb SM, Dunn NA, Muller JM, Pyke CM, Baade PD (2012) The descriptive epidemiology of female breast cancer: an international comparison of screening, incidence, survival and mortality. Cancer Epidemiol 36:237–248

    Article  PubMed  Google Scholar 

  3. Weigel S, Biesheuvel C, Berkemeyer S, Kugel H, Heindel W (2013) Digital mammography screening: how many breast cancers are additionally detected by bilateral ultrasound examination during assessment? Eur Radiol 23:684–691

    Article  PubMed  Google Scholar 

  4. Peters NH, Borel Rinkes IH, Zuithoff NP, Mali WP, Moons KG, Peeters PH (2008) Meta-analysis of MR imaging in the diagnosis of breast lesions. Radiology 246:116–124

    Article  PubMed  Google Scholar 

  5. Pediconi F, Kubik-Huch R, Chilla B, Schwenke C, Kinkel K (2013) Intra-individual randomised comparison of gadobutrol 1.0 M versus gadobenate dimeglumine 0.5 M in patients scheduled for preoperative breast MRI. Eur Radiol 23:84–92

    Article  CAS  PubMed  Google Scholar 

  6. Wang LV, Hu S (2012) Photoacoustic tomography: in vivo imaging from organelles to organs. Science 335:1458–1462

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Ntziachristos V (2010) Going deeper than microscopy: the optical imaging frontier in biology. Nat Methods 7:603–614

    Article  CAS  PubMed  Google Scholar 

  8. Ntziachristos V, Razansky D (2010) Molecular imaging by means of multispectral optoacoustic tomography (MSOT). Chem Rev 110:2783–2794

    Article  CAS  PubMed  Google Scholar 

  9. Wang LV (2008) Prospects of photoacoustic tomography. Med Phys 35:5758–5767

    Article  PubMed Central  PubMed  Google Scholar 

  10. Leff DR, Warren OJ, Enfield LC et al (2008) Diffuse optical imaging of the healthy and diseased breast: a systematic review. Breast Cancer Res Treat 108:9–22

    Article  PubMed  Google Scholar 

  11. Pogue BW, Jiang S, Dehghani H et al (2004) Characterization of hemoglobin, water, and NIR scattering in breast tissue: analysis of intersubject variability and menstrual cycle changes. J Biomed Opt 9:541–552

    Article  CAS  PubMed  Google Scholar 

  12. Menke J, Voss U, Möller G, Jorch G (2003) Reproducibility of cerebral near infrared spectroscopy in neonates. Biol Neonate 83:6–11

    Article  CAS  PubMed  Google Scholar 

  13. Menke J, Stöcker H, Sibrowski W (2004) Cerebral oxygenation and hemodynamics during blood donation studied by near-infrared spectroscopy. Transfusion 44:414–421

    Article  CAS  PubMed  Google Scholar 

  14. Menke J, Möller G (2014) Cerebral near-infrared spectroscopy correlates to vital parameters during cardiopulmonary bypass surgery in children. Pediatr Cardiol 35:155–163

    Article  PubMed  Google Scholar 

  15. Hale GM, Querry MR (1973) Optical constants of water in the 200-nm to 200-microm wavelength region. Appl Opt 12:555–563

    Article  CAS  PubMed  Google Scholar 

  16. Kuenster JT, Norris KH (1994) Spectrophotometry of human haemogobin in the near infrared region from 620 to 2500 nm. J Near Infrared Spectrosc 2:59–65

    Article  Google Scholar 

  17. Landsman ML, Kwant G, Mook GA, Zijlstra WG (1976) Light-absorbing properties, stability, and spectral stabilization of indocyanine green. J Appl Physiol 40:575–583

    CAS  PubMed  Google Scholar 

  18. Herzog E, Taruttis A, Beziere N, Lutich AA, Razansky D, Ntziachristos V (2012) Optical imaging of cancer heterogeneity with multispectral optoacoustic tomography. Radiology 263:461–468

    Article  PubMed  Google Scholar 

  19. Sano K, Mitsunaga M, Nakajima T, Choyke PL, Kobayashi H (2012) In vivo breast cancer characterization imaging using two monoclonal antibodies activatably labeled with near infrared fluorophores. Breast Cancer Res 14:R61

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Li PC, Wang CR, Shieh DB et al (2008) In vivo photoacoustic molecular imaging with simultaneous multiple selective targeting using antibody-conjugated gold nanorods. Opt Express 16:18605–18615

    Article  CAS  PubMed  Google Scholar 

  21. Bell AG (1880) On the production and reproduction of sound by light. Am J Sci 118:305–324

    Article  Google Scholar 

  22. Röntgen WC (1881) On tones produced by the intermittent irradiation of a gas. Philos Mag (Ser 5) 68:308–311

    Article  Google Scholar 

  23. Manohar S, Vaartjes SE, van Hespen JC et al (2007) Initial results of in vivo non-invasive cancer imaging in the human breast using near-infrared photoacoustics. Opt Express 15:12277–12285

    Article  PubMed  Google Scholar 

  24. Heijblom M, Piras D, Xia W, van Hespen JC et al (2012) Visualizing breast cancer using the Twente photoacoustic mammoscope: What do we learn from twelve new patient measurements? Opt Express 20:11582–11597

    Article  CAS  PubMed  Google Scholar 

  25. Kitai T, Torii M, Sugie T et al (2014) Photoacoustic mammography: initial clinical results. Breast Cancer 21:146–153

    Article  PubMed  Google Scholar 

  26. Ermilov SA, Khamapirad T, Conjusteau A et al (2009) Laser optoacoustic imaging system for detection of breast cancer. J Biomed Opt 14:024007

    Article  PubMed  Google Scholar 

  27. Jiang S, Pogue BW, Carpenter CM et al (2009) Evaluation of breast tumor response to neoadjuvant chemotherapy with tomographic diffuse optical spectroscopy: case studies of tumor region-of-interest changes. Radiology 252:551–560

    Article  PubMed Central  PubMed  Google Scholar 

  28. Fukutani K, Someda Y, Taku M et al (2011) Characterization of photoacoustic tomography system with dual illumination. Proc SPIE 7899:78992J1–78992J7

    Google Scholar 

  29. Kruger RA, Lam RB, Reinecke DR, Del Rio SP, Doyle RP (2010) Photoacoustic angiography of the breast. Med Phys 37:6096–6100

    Article  PubMed Central  PubMed  Google Scholar 

  30. Kruger RA, Kuzmiak CM, Lam RB, Reinecke DR, Del Rio SP, Steed D (2013) Dedicated 3D photoacoustic breast imaging. Med Phys 40:113301

    Article  PubMed Central  PubMed  Google Scholar 

  31. Li X, Xi L, Jiang R, Yao L, Jiang H (2011) Integrated diffuse optical tomography and photoacoustic tomography: phantom validations. Biomed Opt Express 2:2348–2353

    Article  PubMed Central  PubMed  Google Scholar 

  32. Xi L, Li X, Yao L, Grobmyer S, Jiang H (2012) Design and evaluation of a hybrid photoacoustic tomography and diffuse optical tomography system for breast cancer detection. Med Phys 39:2584–2594

    Article  PubMed  Google Scholar 

  33. Ku G, Fornage BD, Jin X, Xu M, Hunt KK, Wang LV (2005) Thermoacoustic and photoacoustic tomography of thick biological tissues toward breast imaging. Technol Cancer Res Treat 4:559–566

    Article  PubMed  Google Scholar 

  34. Pramanik M, Ku G, Li C, Wang LV (2008) Design and evaluation of a novel breast cancer detection system combining both thermoacoustic (TA) and photoacoustic (PA) tomography. Med Phys 35:2218–2223

    Article  PubMed Central  PubMed  Google Scholar 

  35. Manohar S, Kharine A, van Hespen JC, Steenbergen W, van Leeuwen TG (2005) The Twente Photoacoustic Mammoscope: system overview and performance. Phys Med Biol 50:2543–2557

    Article  PubMed  Google Scholar 

  36. Manohar S, Kharine A, van Hespen JC, Steenbergen W, van Leeuwen TG (2004) Photoacoustic mammography laboratory prototype: imaging of breast tissue phantoms. J Biomed Opt 9:1172–1181

    Article  PubMed  Google Scholar 

  37. DIN EN 60 825-1 (VDE 0837-1): 200−11

  38. Rosenthal A, Razansky D, Ntziachristos V (2011) High-sensitivity compact ultrasonic detector based on a pi-phase-shifted fiber Bragg grating. Opt Lett 36:1833–1835

    Article  PubMed  Google Scholar 

  39. Glatz J, Deliolanis NC, Buehler A, Razansky D, Ntziachristos V (2011) Blind source unmixing in multi-spectral optoacoustic tomography. Opt Express 19:3175–3184

    Article  CAS  PubMed  Google Scholar 

  40. Razansky D, Buehler A, Ntziachristos V (2011) Volumetric real-time multispectral optoacoustic tomography of biomarkers. Nat Protoc 6:1121–1129

    Article  CAS  PubMed  Google Scholar 

  41. van Veen RL, Sterenborg HJ, Pifferi A, Torricelli A, Chikoidze E, Cubeddu R (2005) Determination of visible near-IR absorption coefficients of mammalian fat using time- and spatially resolved diffuse reflectance and transmission spectroscopy. J Biomed Opt 10:054004

    Article  PubMed  Google Scholar 

  42. Haisch C, Eilert-Zell K, Vogel MM, Menzenbach P, Niessner R (2010) Combined optoacoustic/ultrasound system for tomographic absorption measurements: possibilities and limitations. Anal Bioanal Chem 397:1503–1510

    Article  CAS  PubMed  Google Scholar 

  43. Dean-Ben XL, Razansky D (2013) Portable spherical array probe for volumetric real-time optoacoustic imaging at centimeter-scale depths. Opt Express 21:28062–28071

    Article  PubMed  Google Scholar 

  44. Kim C, Erpelding TN, Jankovic L, Pashley MD, Wang LV (2010) Deeply penetrating in vivo photoacoustic imaging using a clinical ultrasound array system. Biomed Opt Express 1:278–284

    Article  PubMed Central  PubMed  Google Scholar 

  45. Dean-Ben XL, Razansky D (2013) Functional optoacoustic human angiography with handheld video rate three-dimensional scanner. Photoacoustics 1:68–73

    Article  PubMed Central  PubMed  Google Scholar 

  46. Daoudi K, van den Berg PJ, Rabot O et al (2014) Handheld probe integrating laser diode and ultrasound transducer array for ultrasound/photoacoustic dual modality imaging. Opt Express 22:26365–26374

    Article  CAS  PubMed  Google Scholar 

  47. Jaeger M, Preisser S, Kitz M et al (2011) Improved contrast deep optoacoustic imaging using displacement-compensated averaging: breast tumour phantom studies. Phys Med Biol 56:5889–5901

    Article  CAS  PubMed  Google Scholar 

  48. Kang J, Kim EK, Kim GR, Yoon C, Song TK, Chang JH (2015) Photoacoustic imaging of breast microcalcifications: a validation study with 3-dimensional ex vivo data and spectrophotometric measurement. J Biophotonics 8:71–80

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The scientific guarantor of this publication is Jan Menke. The author of this manuscript declares no relationships with any companies, whose products or services may be related to the subject matter of the article. The author states that this work has not received any funding. No complex statistical methods were necessary for this paper. Institutional Review Board approval was not required because this is a review. Written informed consent was not required for this study because this is a review. Some study subjects or cohorts have been previously reported in the cited papers. Methodology: systematic review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Menke.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 81.5 kb)

ESM 2

(DOC 301 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Menke, J. Photoacoustic breast tomography prototypes with reported human applications. Eur Radiol 25, 2205–2213 (2015). https://doi.org/10.1007/s00330-015-3647-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-015-3647-x

Keywords

Navigation