Advertisement

European Radiology

, Volume 25, Issue 6, pp 1742–1751 | Cite as

Assessment of image quality in soft tissue and bone visualization tasks for a dedicated extremity cone-beam CT system

  • S. DemehriEmail author
  • A. Muhit
  • W. Zbijewski
  • J. W. Stayman
  • J. Yorkston
  • N. Packard
  • R. Senn
  • D. Yang
  • D. Foos
  • G. K. Thawait
  • L. M. Fayad
  • A. Chhabra
  • J. A. Carrino
  • J. H. Siewerdsen
Musculoskeletal

Abstract

Objective

To assess visualization tasks using cone-beam CT (CBCT) compared to multi-detector CT (MDCT) for musculoskeletal extremity imaging.

Methods

Ten cadaveric hands and ten knees were examined using a dedicated CBCT prototype and a clinical multi-detector CT using nominal protocols (80kVp-108mAs for CBCT; 120kVp- 300mAs for MDCT). Soft tissue and bone visualization tasks were assessed by four radiologists using five-point satisfaction (for CBCT and MDCT individually) and five-point preference (side-by-side CBCT versus MDCT image quality comparison) rating tests. Ratings were analyzed using Kruskal–Wallis and Wilcoxon signed-rank tests, and observer agreement was assessed using the Kappa-statistic.

Results

Knee CBCT images were rated “excellent” or “good” (median scores 5 and 4) for “bone” and “soft tissue” visualization tasks. Hand CBCT images were rated “excellent” or “adequate” (median scores 5 and 3) for “bone” and “soft tissue” visualization tasks. Preference tests rated CBCT equivalent or superior to MDCT for bone visualization and favoured the MDCT for soft tissue visualization tasks. Intraobserver agreement for CBCT satisfaction tests was fair to almost perfect (κ ~ 0.26–0.92), and interobserver agreement was fair to moderate (κ ~ 0.27–0.54).

Conclusion

CBCT provided excellent image quality for bone visualization and adequate image quality for soft tissue visualization tasks.

Key Points

CBCT provided adequate image quality for diagnostic tasks in extremity imaging.

CBCT images were “excellent” for “bone” and “good/adequate” for “soft tissue” visualization tasks.

CBCT image quality was equivalent/superior to MDCT for bone visualization tasks.

Keywords

Cone-beam computed tomography Musculoskeletal Orthopedics Rheumatology Weight-bearing 

Abbreviations and acronyms

CBCT

Cone-beam computed tomography

MDCT

Multidetector computed tomography

MRI

Magnetic resonance imaging

CTDI

Computed tomography dose index

CNR

Contrast-to-noise ratio

Notes

Acknowledgments

The scientific guarantor of this publication is Dr. Shadpour Demehri. The authors of this manuscript declare relationships with the following companies: Carestream Health, Inc. The research was supported by National Institutes of Health Grants 2R01-CA-112163 and R21-AR-062993 and academic-industry partnership with Carestream Health (Rochester NY). One of the authors has significant statistical expertise. Institutional Review Board approval was not required because this study does not involve any human subjects. All data was collected using cadavers, and state and institutional requirements were followed. Methodology: retrospective, observational, performed at one institution

References

  1. 1.
    Fayad LM, Corl F, Fishman EK (2009) Pediatric skeletal trauma: use of multiplanar reformatted and three-dimensional 64-row multidetector CT in the emergency department. Radiographics 29(1):135–50CrossRefPubMedGoogle Scholar
  2. 2.
    Demehri S, Chalian M, Farahani SJ, Fishman EK, Fayad LM (2014) Detection and characterization of tendon abnormalities with multidetector computed tomography. J Comput Assist Tomogr 38(2):299–307CrossRefPubMedGoogle Scholar
  3. 3.
    Scarfe WC, Farman AG, Sukovic P (2006) Clinical applications of cone-beam computed tomography in dental practice. J Can Dent Assoc 72(1):75–80PubMedGoogle Scholar
  4. 4.
    O”Connell A, Conover DL, Zhang Y et al (2010) Cone-beam CT for breast imaging: Radiation dose, breast coverage, and image quality. AJR Am J Roentgenol 195(2):496–509CrossRefGoogle Scholar
  5. 5.
    Ingrosso G, Miceli R, Fedele D et al (2012) Cone-beam computed tomography in hypofractionated stereotactic radiotherapy for brain metastases. Radiat Oncol 7(1):54CrossRefPubMedCentralPubMedGoogle Scholar
  6. 6.
    Yu JJ, Kim GT, Choi YS et al (2012) Accuracy of a cone beam computed tomography-guided surgical stent for orthodontic mini-implant placement. Angle Orthod 82(2):275–83CrossRefPubMedGoogle Scholar
  7. 7.
    Carrino JA, Al Muhit A, Zbijewski W, Thawait GK, Stayman JW, Packard N, Senn R, Yang D, Foos DH, Yorkston J, Siewerdsen JH (2014) Dedicated cone-beam CT system for extremity imaging. Radiology 270(3):816–24CrossRefPubMedCentralPubMedGoogle Scholar
  8. 8.
    Hirschmann A, Pfirrmann CW, Klammer G, Espinosa N, Buck FM (2014) Upright Cone CT of the hindfoot: Comparison of the non-weight-bearing with the upright weight-bearing position. Eur Radiol 24(3):553–8CrossRefPubMedGoogle Scholar
  9. 9.
    Tuominen EK, Kankare J, Koskinen SK, Mattila KT (2013) Weight-bearing CT imaging of the lower extremity. AJR Am J Roentgenol 200(1):146–8CrossRefPubMedGoogle Scholar
  10. 10.
    Suzuki T, Ito S, Handa S et al (2010) New low-field extremity MRI, compacTscan: comparison with whole-body 1.5 T conventional MRI. Mod Rheumatol 20(4):331–6CrossRefPubMedGoogle Scholar
  11. 11.
    Choi JH, Fahrig R, Keil A et al (2013) Fiducial marker-based correction for involuntary motion in weight-bearing C-arm CT scanning of knees. Part I. Numerical model-based optimization. Med Phys 40(9):091905CrossRefPubMedCentralPubMedGoogle Scholar
  12. 12.
    Koskinen SK, Haapamäki VV, Salo J et al (2013) CT arthrography of the wrist using a novel, mobile, dedicated extremity cone-beam CT (CBCT). Skelet Radiol 42(5):649–57CrossRefGoogle Scholar
  13. 13.
    Guggenberger R, Winklhofer S, Spiczak JV, Andreisek G, Alkadhi H (2013) In vitro high-resolution flat-panel computed tomographic arthrography for artificial cartilage defect detection: comparison with multidetector computed tomography. Invest Radiol 48(8):614–21CrossRefPubMedGoogle Scholar
  14. 14.
    Finkenstaedt T, Morsbach F, Calcagni M, Vich M, Pfirrmann CW, Alkadhi H, Runge VM, Andreisek G, Guggenberger R (2014) Metallic artifacts from internal scaphoid fracture fixation screws: comparison between C-arm flat-panel, cone-beam, and multidetector computed tomography. Invest Radiol 49(8):532–9CrossRefPubMedGoogle Scholar
  15. 15.
    Zbijewski W, De Jean P, Prakash P et al (2011) A dedicated cone-beam CT system for musculoskeletal extremities imaging: design, optimization, and initial performance characterization. Med Phys 38(8):4700–4713CrossRefPubMedCentralPubMedGoogle Scholar
  16. 16.
    Dixon RL, Anderson JA, Bakalyar DM, et al (2010) Comprehensive methodology for the evaluation of radiation dose in x-ray computed tomography. AAPM Task Group Report 111Google Scholar
  17. 17.
    Boone JM, Strauss KJ, Cody DD, et al (2011) Size-Specific Dose Estimates (SSDE) in Pediatric and Adult Body CT Examinations. AAPM Task Group Report 204Google Scholar
  18. 18.
    Kashani H, Gang JG, Shkumat NA et al (2009) Development of a high-performance dual-energy chest imaging system: initial investigation of diagnostic performance. Acad Radiol 16(4):464–476CrossRefPubMedCentralPubMedGoogle Scholar
  19. 19.
    Williams DB, Siewerdsen JH, Tward DJ et al (2007) Optimal kvp selection for dual-energy imaging of the chest: evaluation by task-specific observer preference tests. Med Phys 34(10):3916–3925CrossRefPubMedGoogle Scholar
  20. 20.
    Bidgood WD Jr, Horii SC (1992) Introduction to the ACR-NEMA DICOM standard. Radiographics 12(2):345–355CrossRefPubMedGoogle Scholar
  21. 21.
    Kruskal WH, Wallis WA (1952) Use of ranks in One-criterion variance analysis. J Am Stat Assoc 47(260):583–621CrossRefGoogle Scholar
  22. 22.
    Zou KH, Carrino JA (2002) Comparison of accuracy and interreader agreement in side-by-side versus independent evaluations of MR imaging of the medial collateral ligament of the elbow. Acad Radiol 9(5):520–525CrossRefPubMedGoogle Scholar
  23. 23.
    Wilcoxon F (1945) Individual Comparisons by Ranking Methods. Biom Bull 1(6):80–83CrossRefGoogle Scholar
  24. 24.
    Cohen J (1960) A coefficient of agreement for nominal scales. Educ Psychol Meas 20(1):37–46CrossRefGoogle Scholar
  25. 25.
    Cohen J (1968) Weighted kappa: nominal scale agreement with provision for scaled disagreement or partial credit. Psychol Bull 70(4):213–20CrossRefPubMedGoogle Scholar
  26. 26.
    Mac Niocaill RF, Quinlan JF, Stapleton RD et al (2011) Inter- and intra-observer variability associated with the use of the Mirels” scoring system for metastatic bone lesions. Int Orthop 35(1):83–86CrossRefPubMedCentralPubMedGoogle Scholar
  27. 27.
    Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 33(1):159–174CrossRefPubMedGoogle Scholar
  28. 28.
    Jarvik JG (2001) The research framework. AJR Am J Roentgenol 176(4):873–8CrossRefPubMedGoogle Scholar
  29. 29.
    Sisniega A, Zbijewski W, Badal A et al (2013) Monte Carlo study of the effects of system geometry and antiscatter grids on cone-beam CT scatter distributions. Med Phys 40(5):051915CrossRefPubMedCentralPubMedGoogle Scholar
  30. 30.
    Erdogan H, Fessler JA (1999) Monotonic algorithms for transmission tomography. IEEE Trans Med Imaging 18(9):801–814CrossRefPubMedGoogle Scholar
  31. 31.
    Muhit AA, Arora S, Ogawa M et al (2013) Peripheral quantitative CT (pQCT) using a dedicated extremity cone-beam CT scanner. SPIE Med Imaging: Biomed Appl Mol, Struct Func Imaging 29:867203–867207Google Scholar
  32. 32.
    Link TM (2012) Osteoporosis imaging: state of the art and advanced imaging. Radiology 263(1):3–17CrossRefPubMedCentralPubMedGoogle Scholar
  33. 33.
    Odgaard A (1997) Three-dimensional methods for quantification of cancellous bone architecture. Bone 20(4):315–28CrossRefPubMedGoogle Scholar
  34. 34.
    Roos PG, Colbeth RE, Mollov I et al (2004) Multiple-gain-ranging readout method to extend the dynamic range of amorphous silicon flat-panel imagers. ProcSPIE Phys Med Imaging 5368(1):139–149Google Scholar

Copyright information

© European Society of Radiology 2015

Authors and Affiliations

  • S. Demehri
    • 1
    • 4
    Email author
  • A. Muhit
    • 2
  • W. Zbijewski
    • 2
  • J. W. Stayman
    • 2
  • J. Yorkston
    • 3
  • N. Packard
    • 3
  • R. Senn
    • 3
  • D. Yang
    • 3
  • D. Foos
    • 3
  • G. K. Thawait
    • 1
  • L. M. Fayad
    • 1
  • A. Chhabra
    • 1
  • J. A. Carrino
    • 1
  • J. H. Siewerdsen
    • 1
    • 2
  1. 1.The Russell H. Morgan Department of Radiology and Radiological ScienceJohns Hopkins UniversityBaltimoreUSA
  2. 2.Department of Biomedical EngineeringJohns Hopkins UniversityBaltimoreUSA
  3. 3.Carestream HealthRochesterUSA
  4. 4.Musculoskeletal RadiologyJohns Hopkins Outpatient Center, JHOC 5168BaltimoreUSA

Personalised recommendations