Advertisement

European Radiology

, Volume 25, Issue 2, pp 290–298 | Cite as

Cross-sectional area measurements versus volumetric assessment of the quadriceps femoris muscle in patients with anterior cruciate ligament reconstructions

  • Magda Marcon
  • Bernhard Ciritsis
  • Christoph Laux
  • Daniel Nanz
  • Thi Dan Linh Nguyen-Kim
  • Michael A. Fischer
  • Gustav Andreisek
  • Erika J. UlbrichEmail author
Musculoskeletal

Abstract

Objective

Our aim was to validate the use of cross-sectional area (CSA) measurements at multiple quadriceps muscle levels for estimating the total muscle volume (TMV), and to define the best correlating measurement level.

Methods

Prospective institutional review board (IRB)-approved study with written informed patient consent. Thighs of thirty-four consecutive patients with ACL-reconstructions (men, 22; women, 12) were imaged at 1.5-T using three-dimensional (3D) spoiled dual gradient-echo sequences. CSA was measured at three levels: 15, 20, and 25 cm above the knee joint line. TMV was determined using dedicated volumetry software with semiautomatic segmentation. Pearson’s correlation and regression analysis (including standard error of the estimate, SEE) was used to compare CSA and TMV.

Results

The mean ± standard deviation (SD) for the CSA was 60.6 ± 12.8 cm2 (range, 35.6–93.4 cm2), 71.1 ± 15.1 cm2 (range, 42.5–108.9 cm2) and 74.2 ± 17.1 cm2 (range, 40.9–115.9 cm2) for CSA-15, CSA-20 and CSA-25, respectively. The mean ± SD quadriceps’ TMV was 1949 ± 533.7 cm3 (range, 964.0–3283.0 cm3). Pearson correlation coefficient was r = 0.835 (p < 0.01), r = 0.906 (p < 0.01), and r = 0.956 (p < 0.01) for CSA-15, CSA-20 and CSA-25, respectively. Corresponding SEE, expressed as percentage of the TMV, were 15.2 %, 11.6 % and 8.1 %, respectively.

Conclusion

The best correlation coefficient between quadriceps CSA and TMV was found for CSA-25, but its clinical application to estimate the TMV is limited by a relatively large SEE.

Key points

Cross-sectional area was used to estimate QFM size in patients with ACL-reconstruction

A high correlation coefficient exists between quadriceps CSA and volume

Best correlation was seen 25 cm above the knee joint line

A relatively large standard error of the estimate limits CSA application

Keywords

Knee injuries Quadriceps muscle Anterior cruciate ligament reconstruction Magnetic resonance imaging Three dimensional imaging 

Abbreviations

CSA

Cross-sectional area

TMV

Total muscle volume

ACL

Anterior cruciate ligament

QFM

Quadriceps femoris muscle

Notes

Acknowledgments

The scientific guarantor of this publication is Erika Ulbrich. The authors of this manuscript declare no relationships with any companies, whose products or services may be related to the subject matter of the article. The authors state that this work has not received any funding. No complex statistical methods were necessary for this paper. Institutional Review Board approval was obtained. Written informed consent was obtained from all subjects (patients) in this study. Some study subjects or cohorts have been included in another substudy (not published yet) focusing on the vastus medialis muscle atrophy in patients after ACL reconstruction. Methodology: prospective, cross sectional study / experimental, performed at one institution.

References

  1. 1.
    Baugher WH, Warren RF, Marshall JL, Joseph A (1984) Quadriceps atrophy in the anterior cruciate insufficient knee. Am J Sports Med 12:192–195PubMedCrossRefGoogle Scholar
  2. 2.
    Palmieri-Smith RM, Thomas AC, Wojtys EM (2008) Maximizing quadriceps strength after ACL reconstruction. Clin Sports Med 27:405–424PubMedCrossRefGoogle Scholar
  3. 3.
    Keays SL, Bullock-Saxton J, Keays AC, Newcombe P (2001) Muscle strength and function before and after anterior cruciate ligament reconstruction using semitendonosus and gracilis. Knee 8:229–234PubMedCrossRefGoogle Scholar
  4. 4.
    Lindström M, Strandberg S, Wredmark T, Felländer-Tsai L, Henriksson M (2013) Functional and muscle morphometric effects of ACL reconstruction. A prospective CT study with 1 year follow-up. Scand J Med Sci Sports 23:431–442PubMedCrossRefGoogle Scholar
  5. 5.
    Young A, Stokes M, Crowe M (1985) The size and strength of the quadriceps muscles of old and young men. Clin Physiol 5:145–154PubMedCrossRefGoogle Scholar
  6. 6.
    Williams GN, Buchanan TS, Barrance PJ, Axe MJ, Snyder-Mackler L (2005) Quadriceps weakness, atrophy, and activation failure in predicted noncopers after anterior cruciate ligament injury. Am J Sports Med 33:402–407PubMedCrossRefGoogle Scholar
  7. 7.
    Williams GN, Snyder-Mackler L, Barrance PJ, Buchanan TS (2005) Quadriceps femoris muscle morphology and function after ACL injury: a differential response in copers versus non-copers. J Biomech 38:685–693PubMedCrossRefGoogle Scholar
  8. 8.
    Young A, Stokes M, Crowe M (1984) Size and strength of the quadriceps muscles of old and young women. Eur J Clin Investig 14:282–287CrossRefGoogle Scholar
  9. 9.
    Järvelä T, Kannus P, Latvala K, Järvinen M (2002) Simple measurements in assessing muscle performance after an ACL reconstruction. Int J Sports Med 23:196–201PubMedCrossRefGoogle Scholar
  10. 10.
    Callaghan MJ, Oldham JA (2004) Quadriceps atrophy: to what extent does it exist in patellofemoral pain syndrome? Br J Sports Med 38:295–299PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Sanada K, Kearns CF, Midorikawa T, Abe T (2006) Prediction and validation of total and regional skeletal muscle mass by ultrasound in Japanese adults. Eur J Appl Physiol 96:24–31PubMedCrossRefGoogle Scholar
  12. 12.
    Miyatani M, Kanehisa H, Kuno S, Nishijima T, Fukunaga T (2002) Validity of ultrasonograph muscle thickness measurements for estimating muscle volume of knee extensors in humans. Eur J Appl Physiol 86:203–208PubMedCrossRefGoogle Scholar
  13. 13.
    Engstrom CM, Loeb GE, Reid JG, Forrest WJ, Avruch L (1991) Morphometry of the human thigh muscles. A comparison between anatomical sections and computer tomographic and magnetic resonance images. J Anat 176:139–156PubMedCentralPubMedGoogle Scholar
  14. 14.
    Narici MV, Landoni L, Minetti AE (1992) Assessment of human knee extensor muscles stress from in vivo physiological cross-sectional area and strength measurements. Eur J Appl Physiol Occup Physiol 65:438–444PubMedCrossRefGoogle Scholar
  15. 15.
    Nordez A, Jolivet E, Südhoff I, Bonneau D, de Guise JA, Skalli W (2009) Comparison of methods to assess quadriceps muscle volume using magnetic resonance imaging. J Magn Reson Imaging 30:1116–1123PubMedCrossRefGoogle Scholar
  16. 16.
    Walton JM, Roberts N, Whitehouse GH (1997) Measurement of the quadriceps femoris muscle using magnetic resonance and ultrasound imaging. Br J Sports Med 31:59–64PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Jolivet E, Daguet E, Pomero V, Bonneau D, Laredo JD, Skalli W (2008) Volumic patient-specific reconstruction of muscular system based on a reduced dataset of medical images. Comput Methods Biomech Biomed Eng 11:281–290CrossRefGoogle Scholar
  18. 18.
    Lund H, Christensen L, Savnik A, Boesen J, Danneskiold-Samsoe B, Bliddal H (2002) Volume estimation of extensor muscles of the lower leg based on MR imaging. Eur Radiol 12:2982–2987PubMedGoogle Scholar
  19. 19.
    Morse C, Degens H, Jones D (2007) The validity of estimating quadriceps volume from single MRI cross-sections in young men. Eur J Appl Physiol 100:267–274PubMedCrossRefGoogle Scholar
  20. 20.
    Tracy BL, Ivey FM, Jeffrey Metter E, Fleg JL, Siegel EL, Hurley BF (2003) A more efficient magnetic resonance imaging-based strategy for measuring quadriceps muscle volume. Med Sci Sports Exerc 35:425–433PubMedCrossRefGoogle Scholar
  21. 21.
    Tracy BL, Ivey FM, Hurlbut D et al (1999) Muscle quality. II. Effects Of strength training in 65- to 75-yr-old men and women. J Appl Physiol 86:195–201PubMedGoogle Scholar
  22. 22.
    Harridge SD, Kryger A, Stensgaard A (1999) Knee extensor strength, activation, and size in very elderly people following strength training. Muscle Nerve 22:831–839PubMedCrossRefGoogle Scholar
  23. 23.
    Sattler M, Dannhauer T, Hudelmaier M et al (2012) Side differences of thigh muscle cross-sectional areas and maximal isometric muscle force in bilateral knees with the same radiographic disease stage, but unilateral frequent pain – data from the osteoarthritis initiative. Osteoarthr Cartil 20:532–540PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Strandberg S, Wretling ML, T W, A S (2010) Reliability of computed tomography measurements in assessment of thigh muscle cross-sectional area and attenuation. BMC Med Imaging 10:18Google Scholar
  25. 25.
    Barnouin Y, Butler-Browne G, Voit T, et al. (2014) Manual segmentation of individual muscles of the quadriceps femoris using MRI: a reappraisal. J Magn Reson Imaging 40(1):239–47 Google Scholar
  26. 26.
    Esformes JI, Narici MV, Maganaris CN (2002) Measurement of human muscle volume using ultrasonography. Eur J Appl Physiol 87:90–92PubMedCrossRefGoogle Scholar
  27. 27.
    Strandberg S, Lindstrom M, Wretling ML, Aspelin P, Shalabi A (2013) Muscle morphometric effect of anterior cruciate ligament injury measured by computed tomography: aspects on using non-injured leg as control. BMC Musculoskelet Disord 14:150PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Marcon M, Ciritsis B, Laux C, Nanz D, Fischer MA, Andreisek G, Ulbrich EJ (2014) Quantitative and qualitative MR-imaging assessment of vastus medialis muscle volume loss in asymptomatic patients after anterior cruciate ligament reconstruction. JMRI. doi: 10.1002/jmri.24777
  29. 29.
    Roos EM, Roos HP, Lohmander LS, Ekdahl C, Beynnon BD (1998) Knee Injury and Osteoarthritis Outcome Score (KOOS)–development of a self-administered outcome measure. J Orthop Sports Phys Ther 28:88–96PubMedCrossRefGoogle Scholar
  30. 30.
    Barenius B, Forssblad M, Engstrom B, Eriksson K (2013) Functional recovery after anterior cruciate ligament reconstruction, a study of health-related quality of life based on the Swedish National Knee Ligament Register. Knee Surg Sports Traumatol Arthrosc 21:914–927PubMedCrossRefGoogle Scholar
  31. 31.
    Shelbourne KD, Urch SE, Gray T, Freeman H (2012) Loss of normal knee motion after anterior cruciate ligament reconstruction is associated with radiographic arthritic changes after surgery. Am J Sports Med 40:108–113PubMedCrossRefGoogle Scholar
  32. 32.
    Fischer MA, Nanz D, Shimakawa A et al (2013) Quantification of muscle fat in patients with low back pain: comparison of multi-echo MR imaging with single-voxel MR spectroscopy. Radiology 266:555–563PubMedCrossRefGoogle Scholar
  33. 33.
    Shrout PFJ (1979) Intraclass correlations: uses in assessing rater reliability. Psychol Bull 86:420–428PubMedCrossRefGoogle Scholar
  34. 34.
    Kundel HL, Polansky M (2003) Measurement of observer agreement. Radiology 228:303–308PubMedCrossRefGoogle Scholar
  35. 35.
    Landis JKG (1977) The measurement of observer agreement for categorical data. Biometrics 33:159–174PubMedCrossRefGoogle Scholar
  36. 36.
    Shaarani SR, O’Hare C, Quinn A, Moyna N, Moran R, O’Byrne JM (2013) Effect of prehabilitation on the outcome of anterior cruciate ligament reconstruction. Am J Sports Med 41:2117–2127PubMedCrossRefGoogle Scholar
  37. 37.
    Akima H, Furukawa T (2005) Atrophy of thigh muscles after meniscal lesions and arthroscopic partial menisectomy. Knee Surg Sports Traumatol Arthrosc 13:632–637PubMedCrossRefGoogle Scholar
  38. 38.
    Mizner RL, Petterson SC, Stevens JE, Vandenborne K, Snyder-Mackler L (2005) Early quadriceps strength loss after total knee arthroplasty. The contributions of muscle atrophy and failure of voluntary muscle activation. J Bone Joint Surg (Am Vol) 87:1047–1053CrossRefGoogle Scholar
  39. 39.
    Nomura Y, Kuramochi R, Fukubayashi T (2014) Evaluation of hamstring muscle strength and morphology after anterior cruciate ligament reconstruction. Scand J Med Sci Sports. doi: 10.1111/sms.12205
  40. 40.
    Fischer MA, Pfirrmann CW, Espinosa N, Raptis DA, Buck FM (2014) Dixon-based MRI for assessment of muscle-fat content in phantoms, healthy volunteers and patients with achillodynia: comparison to visual assessment of calf muscle quality. Eur Radiol 24(6):1366–75Google Scholar
  41. 41.
    Beeler S, Ek ET, Gerber C (2013) A comparative analysis of fatty infiltration and muscle atrophy in patients with chronic rotator cuff tears and suprascapular neuropathy. J Should Elb Surg Am Should Elb Surg 22:1537–1546CrossRefGoogle Scholar
  42. 42.
    Goutallier D, Postel J-M, Bernageau J, Lavau L, Voisin M-C (1994) Fatty muscle degeneration in cuff ruptures: pre- and postoperative evaluation by CT scan. Clin Orthop Relat Res 304:78–83PubMedGoogle Scholar
  43. 43.
    d’Assignies G, Ruel M, Khiat A et al (2009) Noninvasive quantitation of human liver steatosis using magnetic resonance and bioassay methods. Eur Radiol 19:2033–2040PubMedCrossRefGoogle Scholar
  44. 44.
    Fischer MA, Nanz D, Reiner C et al (2010) Diagnostic performance and accuracy of 3-D spoiled gradient-dual-echo MRI with water- and fat-signal separation in liver-fat quantification: comparison to liver biopsy. Invest Radiol 45:465–470PubMedCrossRefGoogle Scholar
  45. 45.
    Borrello JA, Chenevert TL, Meyer CR, Aisen AM, Glazer GM (1987) Chemical shift-based true water and fat images: regional phase correction of modified spin-echo MR images. Radiology 164:531–537PubMedCrossRefGoogle Scholar
  46. 46.
    Ma J (2008) Dixon techniques for water and fat imaging. J Magn Reson Imaging 28:543–558PubMedCrossRefGoogle Scholar
  47. 47.
    Reeder SB, McKenzie CA, Pineda AR et al (2007) Water-fat separation with IDEAL gradient-echo imaging. J Magn Reson Imaging 25:644–652PubMedCrossRefGoogle Scholar
  48. 48.
    Bruhn H, Frahm J, Gyngell ML, Merboldt KD, Hanicke W, Sauter R (1991) Localized proton NMR spectroscopy using stimulated echoes: applications to human skeletal muscle in vivo. Magn Reson Med 17:82–94PubMedCrossRefGoogle Scholar
  49. 49.
    Dixon WT (1984) Simple proton spectroscopic imaging. Radiology 153:189–194PubMedCrossRefGoogle Scholar
  50. 50.
    MacGillivray TJ, Ross E, Simpson HA, Greig CA (2009) 3D freehand ultrasound for in vivo determination of human skeletal muscle volume. Ultrasound Med Biol 35:928–935PubMedCrossRefGoogle Scholar
  51. 51.
    Cassidy FH, Yokoo T, Aganovic L et al (2009) Fatty liver disease: MR imaging techniques for the detection and quantification of liver steatosis1. Radiographics 29:231–260PubMedCrossRefGoogle Scholar

Copyright information

© European Society of Radiology 2014

Authors and Affiliations

  • Magda Marcon
    • 1
    • 2
  • Bernhard Ciritsis
    • 3
  • Christoph Laux
    • 3
  • Daniel Nanz
    • 1
  • Thi Dan Linh Nguyen-Kim
    • 1
  • Michael A. Fischer
    • 1
  • Gustav Andreisek
    • 1
  • Erika J. Ulbrich
    • 1
    Email author
  1. 1.Department of RadiologyUniversity Hospital ZurichZurichSwitzerland
  2. 2.Department of RadiologyUniversity Hospital UdineUdineItaly
  3. 3.Department of TraumatologyUniversity Hospital ZurichZurichSwitzerland

Personalised recommendations