Delayed gadolinium-enhanced MRI of the meniscus (dGEMRIM) in patients with knee osteoarthritis: relation with meniscal degeneration on conventional MRI, reproducibility, and correlation with dGEMRIC

Abstract

Objectives

To assess (1) whether normal and degenerated menisci exhibit different T1GD on delayed gadolinium-enhanced MRI of the meniscus (dGEMRIM), (2) the reproducibility of dGEMRIM and (3) the correlation between meniscus and cartilage T1GD in knee osteoarthritis (OA) patients.

Methods

In 17 OA patients who underwent dGEMRIM twice within 7 days, meniscus and cartilage T1GD was calculated. Meniscus pathology was evaluated on conventional MRI. T1GD in normal and degenerated menisci were compared using a Student’s t-test. Reproducibility was assessed using ICCs. Pearson’s correlation was calculated between meniscus and cartilage T1GD.

Results

A trend towards lower T1GD in degenerated menisci (mean: 402 ms; 95 % CI: 359–444 ms) compared to normal menisci (mean: 448 ms; 95 % CI: 423–473 ms) was observed (p = 0.05). Meniscus T1GD ICCs were 0.85–0.90. The correlation between meniscus and cartilage T1GD was moderate in the lateral (r = 0.52–0.75) and strong in the medial compartment (r = 0.78–0.94).

Conclusions

Our results show that degenerated menisci have a clear trend towards lower T1GD compared to normal menisci. Since these results are highly reproducible, meniscus degeneration may be assessed within one delayed gadolinium-enhanced MRI simultaneously with cartilage. The strong correlation between meniscus and cartilage T1GD suggests concomitant degeneration in both tissues in OA, but also suggests that dGEMRIC may not be regarded entirely as sulphated glycosaminoglycan specific.

Key Points

dGEMRIM T1 GD can possibly be used to assess meniscal degeneration;

dGEMRIM yields highly reproducible meniscal T1 GD in early stage osteoarthritic patients;

Concomitant degeneration of cartilage and meniscus tissue occurs in early stage osteoarthritis;

dGEMRIC cannot be regarded as entirely sulphated glycosaminoglycan specific.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Abbreviations

95 % CI:

95 % confidence interval

aMEN:

anterior horn of the meniscus

BMI:

body mass index

dGEMRIC:

delayed gadolinium-enhanced magnetic resonance imaging of cartilage

dGEMRIM:

delayed gadolinium-enhanced magnetic resonance imaging of the meniscus

FSE:

fast spin echo

ICC:

intraclass correlation coefficient

MRI:

magnetic resonance imaging

OA:

osteoarthritis

PG:

proteoglycans

pMEN:

posterior horn of the meniscus

ROIs:

regions of interest

sGAG:

sulphated glycosaminoglycans

TI:

inversion times

wbFC:

weight-bearing cartilage of the femoral condyles

wbTP:

weight-bearing cartilage of the tibial plateaus

References

  1. 1.

    Conaghan PG, Kloppenburg M, Schett G, Bijlsma JW (2014) Osteoarthritis research priorities: a report from a EULAR ad hoc expert committee. Ann Rheum Dis. doi:10.1136/annrheumdis-2013-204660

    Google Scholar 

  2. 2.

    Litwic A, Edwards MH, Dennison EM, Cooper C (2013) Epidemiology and burden of osteoarthritis. Br Med Bull 105:185–199

    PubMed Central  PubMed  Article  Google Scholar 

  3. 3.

    Wenham CY, Conaghan PG (2013) New horizons in osteoarthritis. Age Ageing 42:272–278

    PubMed  Article  Google Scholar 

  4. 4.

    Yelin E, Murphy L, Cisternas MG, Foreman AJ, Pasta DJ, Helmick CG (2007) Medical care expenditures and earnings losses among persons with arthritis and other rheumatic conditions in 2003, and comparisons with 1997. Arthritis Rheum 56:1397–1407

    PubMed Central  PubMed  Article  Google Scholar 

  5. 5.

    Loeser RF, Goldring SR, Scanzello CR, Goldring MB (2012) Osteoarthritis: a disease of the joint as an organ. Arthritis Rheum 64:1697–1707

    PubMed Central  PubMed  Article  Google Scholar 

  6. 6.

    Hunter DJ, Zhang YQ, Niu JB et al (2006) The association of meniscal pathologic changes with cartilage loss in symptomatic knee osteoarthritis. Arthritis Rheum 54:795–801

    CAS  PubMed  Article  Google Scholar 

  7. 7.

    Englund M, Guermazi A, Roemer FW et al (2009) Meniscal tear in knees without surgery and the development of radiographic osteoarthritis among middle-aged and elderly persons. The Multicenter Osteoarthritis Study. Arthritis Rheum 60:831–839

    PubMed Central  PubMed  Article  Google Scholar 

  8. 8.

    Englund M, Guermazi A, Lohmander SL (2009) The role of the meniscus in knee osteoarthritis: a cause or consequence? Radiol Clin N Am 47:703–712

    PubMed  Article  Google Scholar 

  9. 9.

    Buckwalter JA, Mankin HJ (1998) Articular cartilage: degeneration and osteoarthritis, repair, regeneration, and transplantation. Instr Course Lect 47–1998:487–504

    Google Scholar 

  10. 10.

    Grushko G, Schneiderman R, Maroudas A (1989) Some biochemical and biophysical parameters for the study of the pathogenesis of osteoarthritis: a comparison between the processes of ageing and degeneration in human hip cartilage. Connect Tissue Res 19:149–176

    CAS  PubMed  Article  Google Scholar 

  11. 11.

    Mcnicol D, Roughley PJ (1980) Extraction and characterization of proteoglycan from human meniscus. Biochem J 185:705–713

    CAS  PubMed Central  PubMed  Google Scholar 

  12. 12.

    Bashir A, Gray ML, Boutin RD, Burstein D (1997) Glycosaminoglycan in articular cartilage: in vivo assessment with delayed Gd(DTPA)(2-)-enhanced MR imaging. Radiology 205:551–558

    CAS  PubMed  Article  Google Scholar 

  13. 13.

    Tiderius CJ, Olsson LE, Leander P, Ekberg O, Dahlberg L (2003) Delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) in early knee osteoarthritis. Magn Reson Med 49:488–492

    PubMed  Article  Google Scholar 

  14. 14.

    Bashir A, Gray ML, Hartke J, Burstein D (1999) Nondestructive imaging of human cartilage glycosaminoglycan concentration by MRI. Magn Reson Med 41:857–865

    CAS  PubMed  Article  Google Scholar 

  15. 15.

    Hellio Le Graverand MP, Vignon E, Otterness IG, Hart DA (2001) Early changes in lapine menisci during osteoarthritis development: part I: cellular and matrix alterations. Osteoarthr Cartil 9:56–64

    CAS  PubMed  Article  Google Scholar 

  16. 16.

    Krishnan N, Shetty SK, Williams A, Mikulis B, McKenzie C, Burstein D (2007) Delayed gadolinium-enhanced magnetic resonance imaging of the meniscus: an index of meniscal tissue degeneration? Arthritis Rheum 56:1507–1511

    PubMed  Article  Google Scholar 

  17. 17.

    Mayerhoefer ME, Mamisch TC, Riegler G et al (2011) Gadolinium diethylenetriaminepentaacetate enhancement kinetics in the menisci of asymptomatic subjects: a first step towards a dedicated dGEMRIC (delayed gadolinium-enhanced MRI of cartilage)-like protocol for biochemical imaging of the menisci. NMR Biomed 24:1210–1215

    CAS  PubMed  Article  Google Scholar 

  18. 18.

    Venn M, Maroudas A (1977) Chemical composition and swelling of normal and osteoarthrotic femoral head cartilage. I. Chemical composition. Ann Rheum Dis 36:121–129

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  19. 19.

    Herwig J, Egner E, Buddecke E (1984) Chemical changes of human knee-joint menisci in various stages of degeneration. Ann Rheum Dis 43:635–640

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  20. 20.

    Jensen MP, Miller L, Fisher LD (1998) Assessment of pain during medical procedures: a comparison of three scales. Clin J Pain 14:343–349

    CAS  PubMed  Article  Google Scholar 

  21. 21.

    Kellgren JH, Lawrence JS (1957) Radiological assessment of osteo-arthrosis. Ann Rheum Dis 16:494–502

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  22. 22.

    McKenzie CA, Williams A, Prasad PV, Burstein D (2006) Three-dimensional delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) at 1.5T and 3.0T. J Magn Reson Imaging 24:928–933

    PubMed  Google Scholar 

  23. 23.

    Studler U, White LM, Andreisek G, Luu S, Cheng HLM, Sussman MS (2010) Impact of motion on T1 mapping acquired with inversion recovery fast spin echo and rapid spoiled gradient recalled-echo pulse sequences for delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) in volunteers. J Magn Reson Imaging 32:394–398

    PubMed  Google Scholar 

  24. 24.

    Bron EE, van Tiel J, Smit H et al (2013) Image registration improves human knee cartilage T1 mapping with delayed gadolinium-enhanced MRI of cartilage (dGEMRIC). Eur Radiol 23:246–252

    PubMed Central  PubMed  Article  Google Scholar 

  25. 25.

    van Tiel J, Bron EE, Tiderius CJ et al (2013) Reproducibility of 3D delayed gadolinium enhanced MRI of cartilage (dGEMRIC) of the knee at 3.0T in patients with early stage osteoarthritis. Eur Radiol 23:496–504

    PubMed  Article  Google Scholar 

  26. 26.

    van Tiel J, Reijman M, Bos PK et al (2013) Delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) shows no change in cartilage structural composition after viscosupplementation in patients with early-stage knee osteoarthritis. PLoS One 8:e79785

    PubMed Central  PubMed  Article  Google Scholar 

  27. 27.

    Tiderius C, Hori M, Williams A et al (2006) dGEMRIC as a function of BMI. Osteoarthr Cartil 14:1091–1097

    CAS  PubMed  Article  Google Scholar 

  28. 28.

    Crues JV, Mink J, Levy TL, Lotysch M, Stoller DW (1987) Meniscal tears of the knee—accuracy of MR imaging. Radiology 164:445–448

    PubMed  Article  Google Scholar 

  29. 29.

    Reicher MA, Hartzman S, Duckwiler GR, Bassett LW, Anderson LJ, Gold RH (1986) Meniscal injuries—detection using MR imaging. Radiology 159:753–757

    CAS  PubMed  Article  Google Scholar 

  30. 30.

    Atkinson G, Nevill AM (1998) Statistical methods for assessing measurement error (reliability) in variables relevant to sports medicine. Sports Med 26:217–238

    CAS  PubMed  Article  Google Scholar 

  31. 31.

    Meredith DS, Losina E, Mahorned NN, Wright J, Katz JN (2005) Factors predicting functional and radiographic outcomes after arthroscopic partial meniscectomy: a review of the literature. Arthrosc J Arthrosc Relat Surg 21:211–223

    Article  Google Scholar 

  32. 32.

    Salata MJ, Gibbs AE, Sekiya JK (2010) A systematic review of clinical outcomes in patients undergoing meniscectomy. Am J Sports Med 38:1907–1916

    PubMed  Article  Google Scholar 

  33. 33.

    Duvvuri U, Kudchodkar S, Reddy R, Leigh JS (2002) T(1rho) relaxation can assess longitudinal proteoglycan loss from articular cartilage in vitro. Osteoarthr Cartil 10:838–844

    CAS  PubMed  Article  Google Scholar 

  34. 34.

    Nieminen MT, Rieppo J, Toyras J et al (2001) T2 relaxation reveals spatial collagen architecture in articular cartilage: a comparative quantitative MRI and polarized light microscopic study. Magn Reson Med 46:487–493

    CAS  PubMed  Article  Google Scholar 

  35. 35.

    Zarins ZA, Bolbos RI, Pialat JB et al (2010) Cartilage and meniscus assessment using T1rho and T2 measurements in healthy subjects and patients with osteoarthritis. Osteoarthr Cartil 18:1408–1416

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  36. 36.

    Li W, Edelman RR, Prasad PV (2011) Delayed contrast enhanced MRI of meniscus with ionic and non-ionic agents. J Magn Reson Imaging 33:731–735

    PubMed  Google Scholar 

  37. 37.

    Li W, Scheidegger R, Wu Y et al (2010) Delayed contrast-enhanced MRI of cartilage: comparison of nonionic and ionic contrast agents. Magn Reson Med 64:1267–1273

    CAS  PubMed  Article  Google Scholar 

  38. 38.

    Silvast TS, Jurvelin JS, Tiitu V, Quinn TM, Töyräs J (2013) Bath concentration of anionic contrast agents does not affect their diffusion and distribution in articular cartilage in vitro. Cartilage 4:42–51

    Article  Google Scholar 

  39. 39.

    Wiener E, Settles M, Weirich G, Schmidt C, Diederichs G (2011) The influence of collagen network integrity on the accumulation of gadolinium-based MR contrast agents in articular cartilage. 183:226–232. doi:10.1055/s-0029-1245739

  40. 40.

    Salo EN, Nissi MJ, Kulmala KA, Tiitu V, Toyras J, Nieminen MT (2012) Diffusion of Gd-DTPA(2)(-) into articular cartilage. Osteoarthr Cartil 20:117–126

    PubMed  Article  Google Scholar 

  41. 41.

    Siebelt M, van Tiel J, Waarsing JH et al (2011) Clinically applied CT arthrography to measure the sulphated glycosaminoglycan content of cartilage. Osteoarthr Cartil 19:1183–1189

    CAS  PubMed  Article  Google Scholar 

  42. 42.

    Watanabe A, Wada Y, Obata T et al (2006) Delayed gadolinium-enhanced MR to determine glycosaminoglycan concentration in reparative cartilage after autologous chondrocyte implantation: preliminary results. Radiology 239:201–208

    PubMed  Article  Google Scholar 

  43. 43.

    Son M, Goodman SB, Chen W, Hargreaves BA, Gold GE, Levenston ME (2013) Regional variation in T1rho and T2 times in osteoarthritic human menisci: correlation with mechanical properties and matrix composition. Osteoarthr Cartil 21:796–805

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  44. 44.

    Williams A, Qian Y, Golla S, Chu CR (2012) UTE-T2* mapping detects sub-clinical meniscus injury after anterior cruciate ligament tear. Osteoarthr Cartil 20:486–494

    CAS  PubMed  Article  Google Scholar 

Download references

Acknowledgements

The scientific guarantor of this publication is Prof. G.P. Krestin, MD, PhD. The authors of this manuscript declare relationships with the following companies: G.P. Krestin is a consultant to General Electric Healthcare and has a collaboration contract with them. The other authors of this manuscript declare no relationships with any companies, whose products or services may be related to the subject matter of the article. This study has received funding by:

We acknowledge the SmartMix Programme of The Netherlands Ministry of Economic Affairs and The Netherlands Ministry of Education, Culture and Science for their financial support.

No complex statistical methods were necessary for this article. Institutional Review Board approval was obtained. Written informed consent was obtained from all subjects (patients) in this study. Methodology: prospective, observational, performed at one institution.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Edwin H. G. Oei.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

van Tiel, J., Kotek, G., Reijman, M. et al. Delayed gadolinium-enhanced MRI of the meniscus (dGEMRIM) in patients with knee osteoarthritis: relation with meniscal degeneration on conventional MRI, reproducibility, and correlation with dGEMRIC. Eur Radiol 24, 2261–2270 (2014). https://doi.org/10.1007/s00330-014-3204-z

Download citation

Keywords

  • Osteoarthritis, knee
  • Menisci, tibial
  • Magnetic resonance imaging
  • Cartilage, articular
  • dGEMRIC