European Radiology

, Volume 24, Issue 9, pp 2261–2270 | Cite as

Delayed gadolinium-enhanced MRI of the meniscus (dGEMRIM) in patients with knee osteoarthritis: relation with meniscal degeneration on conventional MRI, reproducibility, and correlation with dGEMRIC

  • Jasper van Tiel
  • Gyula Kotek
  • Max Reijman
  • Pieter K. Bos
  • Esther E. Bron
  • Stefan Klein
  • Jan A. N. Verhaar
  • Gabriel P. Krestin
  • Harrie Weinans
  • Edwin H. G. Oei
Musculoskeletal

Abstract

Objectives

To assess (1) whether normal and degenerated menisci exhibit different T1GD on delayed gadolinium-enhanced MRI of the meniscus (dGEMRIM), (2) the reproducibility of dGEMRIM and (3) the correlation between meniscus and cartilage T1GD in knee osteoarthritis (OA) patients.

Methods

In 17 OA patients who underwent dGEMRIM twice within 7 days, meniscus and cartilage T1GD was calculated. Meniscus pathology was evaluated on conventional MRI. T1GD in normal and degenerated menisci were compared using a Student’s t-test. Reproducibility was assessed using ICCs. Pearson’s correlation was calculated between meniscus and cartilage T1GD.

Results

A trend towards lower T1GD in degenerated menisci (mean: 402 ms; 95 % CI: 359–444 ms) compared to normal menisci (mean: 448 ms; 95 % CI: 423–473 ms) was observed (p = 0.05). Meniscus T1GD ICCs were 0.85–0.90. The correlation between meniscus and cartilage T1GD was moderate in the lateral (r = 0.52–0.75) and strong in the medial compartment (r = 0.78–0.94).

Conclusions

Our results show that degenerated menisci have a clear trend towards lower T1GD compared to normal menisci. Since these results are highly reproducible, meniscus degeneration may be assessed within one delayed gadolinium-enhanced MRI simultaneously with cartilage. The strong correlation between meniscus and cartilage T1GD suggests concomitant degeneration in both tissues in OA, but also suggests that dGEMRIC may not be regarded entirely as sulphated glycosaminoglycan specific.

Key Points

dGEMRIM T1GDcan possibly be used to assess meniscal degeneration;

dGEMRIM yields highly reproducible meniscal T1GDin early stage osteoarthritic patients;

Concomitant degeneration of cartilage and meniscus tissue occurs in early stage osteoarthritis;

dGEMRIC cannot be regarded as entirely sulphated glycosaminoglycan specific.

Keywords

Osteoarthritis, knee Menisci, tibial Magnetic resonance imaging Cartilage, articular dGEMRIC 

Abbreviations and acronyms

95 % CI

95 % confidence interval

aMEN

anterior horn of the meniscus

BMI

body mass index

dGEMRIC

delayed gadolinium-enhanced magnetic resonance imaging of cartilage

dGEMRIM

delayed gadolinium-enhanced magnetic resonance imaging of the meniscus

FSE

fast spin echo

ICC

intraclass correlation coefficient

MRI

magnetic resonance imaging

OA

osteoarthritis

PG

proteoglycans

pMEN

posterior horn of the meniscus

ROIs

regions of interest

sGAG

sulphated glycosaminoglycans

TI

inversion times

wbFC

weight-bearing cartilage of the femoral condyles

wbTP

weight-bearing cartilage of the tibial plateaus

References

  1. 1.
    Conaghan PG, Kloppenburg M, Schett G, Bijlsma JW (2014) Osteoarthritis research priorities: a report from a EULAR ad hoc expert committee. Ann Rheum Dis. doi:10.1136/annrheumdis-2013-204660 Google Scholar
  2. 2.
    Litwic A, Edwards MH, Dennison EM, Cooper C (2013) Epidemiology and burden of osteoarthritis. Br Med Bull 105:185–199PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Wenham CY, Conaghan PG (2013) New horizons in osteoarthritis. Age Ageing 42:272–278PubMedCrossRefGoogle Scholar
  4. 4.
    Yelin E, Murphy L, Cisternas MG, Foreman AJ, Pasta DJ, Helmick CG (2007) Medical care expenditures and earnings losses among persons with arthritis and other rheumatic conditions in 2003, and comparisons with 1997. Arthritis Rheum 56:1397–1407PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Loeser RF, Goldring SR, Scanzello CR, Goldring MB (2012) Osteoarthritis: a disease of the joint as an organ. Arthritis Rheum 64:1697–1707PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Hunter DJ, Zhang YQ, Niu JB et al (2006) The association of meniscal pathologic changes with cartilage loss in symptomatic knee osteoarthritis. Arthritis Rheum 54:795–801PubMedCrossRefGoogle Scholar
  7. 7.
    Englund M, Guermazi A, Roemer FW et al (2009) Meniscal tear in knees without surgery and the development of radiographic osteoarthritis among middle-aged and elderly persons. The Multicenter Osteoarthritis Study. Arthritis Rheum 60:831–839PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Englund M, Guermazi A, Lohmander SL (2009) The role of the meniscus in knee osteoarthritis: a cause or consequence? Radiol Clin N Am 47:703–712PubMedCrossRefGoogle Scholar
  9. 9.
    Buckwalter JA, Mankin HJ (1998) Articular cartilage: degeneration and osteoarthritis, repair, regeneration, and transplantation. Instr Course Lect 47–1998:487–504Google Scholar
  10. 10.
    Grushko G, Schneiderman R, Maroudas A (1989) Some biochemical and biophysical parameters for the study of the pathogenesis of osteoarthritis: a comparison between the processes of ageing and degeneration in human hip cartilage. Connect Tissue Res 19:149–176PubMedCrossRefGoogle Scholar
  11. 11.
    Mcnicol D, Roughley PJ (1980) Extraction and characterization of proteoglycan from human meniscus. Biochem J 185:705–713PubMedCentralPubMedGoogle Scholar
  12. 12.
    Bashir A, Gray ML, Boutin RD, Burstein D (1997) Glycosaminoglycan in articular cartilage: in vivo assessment with delayed Gd(DTPA)(2-)-enhanced MR imaging. Radiology 205:551–558PubMedCrossRefGoogle Scholar
  13. 13.
    Tiderius CJ, Olsson LE, Leander P, Ekberg O, Dahlberg L (2003) Delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) in early knee osteoarthritis. Magn Reson Med 49:488–492PubMedCrossRefGoogle Scholar
  14. 14.
    Bashir A, Gray ML, Hartke J, Burstein D (1999) Nondestructive imaging of human cartilage glycosaminoglycan concentration by MRI. Magn Reson Med 41:857–865PubMedCrossRefGoogle Scholar
  15. 15.
    Hellio Le Graverand MP, Vignon E, Otterness IG, Hart DA (2001) Early changes in lapine menisci during osteoarthritis development: part I: cellular and matrix alterations. Osteoarthr Cartil 9:56–64PubMedCrossRefGoogle Scholar
  16. 16.
    Krishnan N, Shetty SK, Williams A, Mikulis B, McKenzie C, Burstein D (2007) Delayed gadolinium-enhanced magnetic resonance imaging of the meniscus: an index of meniscal tissue degeneration? Arthritis Rheum 56:1507–1511PubMedCrossRefGoogle Scholar
  17. 17.
    Mayerhoefer ME, Mamisch TC, Riegler G et al (2011) Gadolinium diethylenetriaminepentaacetate enhancement kinetics in the menisci of asymptomatic subjects: a first step towards a dedicated dGEMRIC (delayed gadolinium-enhanced MRI of cartilage)-like protocol for biochemical imaging of the menisci. NMR Biomed 24:1210–1215PubMedCrossRefGoogle Scholar
  18. 18.
    Venn M, Maroudas A (1977) Chemical composition and swelling of normal and osteoarthrotic femoral head cartilage. I. Chemical composition. Ann Rheum Dis 36:121–129PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Herwig J, Egner E, Buddecke E (1984) Chemical changes of human knee-joint menisci in various stages of degeneration. Ann Rheum Dis 43:635–640PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Jensen MP, Miller L, Fisher LD (1998) Assessment of pain during medical procedures: a comparison of three scales. Clin J Pain 14:343–349PubMedCrossRefGoogle Scholar
  21. 21.
    Kellgren JH, Lawrence JS (1957) Radiological assessment of osteo-arthrosis. Ann Rheum Dis 16:494–502PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    McKenzie CA, Williams A, Prasad PV, Burstein D (2006) Three-dimensional delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) at 1.5T and 3.0T. J Magn Reson Imaging 24:928–933PubMedGoogle Scholar
  23. 23.
    Studler U, White LM, Andreisek G, Luu S, Cheng HLM, Sussman MS (2010) Impact of motion on T1 mapping acquired with inversion recovery fast spin echo and rapid spoiled gradient recalled-echo pulse sequences for delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) in volunteers. J Magn Reson Imaging 32:394–398PubMedGoogle Scholar
  24. 24.
    Bron EE, van Tiel J, Smit H et al (2013) Image registration improves human knee cartilage T1 mapping with delayed gadolinium-enhanced MRI of cartilage (dGEMRIC). Eur Radiol 23:246–252PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    van Tiel J, Bron EE, Tiderius CJ et al (2013) Reproducibility of 3D delayed gadolinium enhanced MRI of cartilage (dGEMRIC) of the knee at 3.0T in patients with early stage osteoarthritis. Eur Radiol 23:496–504PubMedCrossRefGoogle Scholar
  26. 26.
    van Tiel J, Reijman M, Bos PK et al (2013) Delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) shows no change in cartilage structural composition after viscosupplementation in patients with early-stage knee osteoarthritis. PLoS One 8:e79785PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Tiderius C, Hori M, Williams A et al (2006) dGEMRIC as a function of BMI. Osteoarthr Cartil 14:1091–1097PubMedCrossRefGoogle Scholar
  28. 28.
    Crues JV, Mink J, Levy TL, Lotysch M, Stoller DW (1987) Meniscal tears of the knee—accuracy of MR imaging. Radiology 164:445–448PubMedCrossRefGoogle Scholar
  29. 29.
    Reicher MA, Hartzman S, Duckwiler GR, Bassett LW, Anderson LJ, Gold RH (1986) Meniscal injuries—detection using MR imaging. Radiology 159:753–757PubMedCrossRefGoogle Scholar
  30. 30.
    Atkinson G, Nevill AM (1998) Statistical methods for assessing measurement error (reliability) in variables relevant to sports medicine. Sports Med 26:217–238PubMedCrossRefGoogle Scholar
  31. 31.
    Meredith DS, Losina E, Mahorned NN, Wright J, Katz JN (2005) Factors predicting functional and radiographic outcomes after arthroscopic partial meniscectomy: a review of the literature. Arthrosc J Arthrosc Relat Surg 21:211–223CrossRefGoogle Scholar
  32. 32.
    Salata MJ, Gibbs AE, Sekiya JK (2010) A systematic review of clinical outcomes in patients undergoing meniscectomy. Am J Sports Med 38:1907–1916PubMedCrossRefGoogle Scholar
  33. 33.
    Duvvuri U, Kudchodkar S, Reddy R, Leigh JS (2002) T(1rho) relaxation can assess longitudinal proteoglycan loss from articular cartilage in vitro. Osteoarthr Cartil 10:838–844PubMedCrossRefGoogle Scholar
  34. 34.
    Nieminen MT, Rieppo J, Toyras J et al (2001) T2 relaxation reveals spatial collagen architecture in articular cartilage: a comparative quantitative MRI and polarized light microscopic study. Magn Reson Med 46:487–493PubMedCrossRefGoogle Scholar
  35. 35.
    Zarins ZA, Bolbos RI, Pialat JB et al (2010) Cartilage and meniscus assessment using T1rho and T2 measurements in healthy subjects and patients with osteoarthritis. Osteoarthr Cartil 18:1408–1416PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Li W, Edelman RR, Prasad PV (2011) Delayed contrast enhanced MRI of meniscus with ionic and non-ionic agents. J Magn Reson Imaging 33:731–735PubMedGoogle Scholar
  37. 37.
    Li W, Scheidegger R, Wu Y et al (2010) Delayed contrast-enhanced MRI of cartilage: comparison of nonionic and ionic contrast agents. Magn Reson Med 64:1267–1273PubMedCrossRefGoogle Scholar
  38. 38.
    Silvast TS, Jurvelin JS, Tiitu V, Quinn TM, Töyräs J (2013) Bath concentration of anionic contrast agents does not affect their diffusion and distribution in articular cartilage in vitro. Cartilage 4:42–51CrossRefGoogle Scholar
  39. 39.
    Wiener E, Settles M, Weirich G, Schmidt C, Diederichs G (2011) The influence of collagen network integrity on the accumulation of gadolinium-based MR contrast agents in articular cartilage. 183:226–232. doi:10.1055/s-0029-1245739
  40. 40.
    Salo EN, Nissi MJ, Kulmala KA, Tiitu V, Toyras J, Nieminen MT (2012) Diffusion of Gd-DTPA(2)(-) into articular cartilage. Osteoarthr Cartil 20:117–126PubMedCrossRefGoogle Scholar
  41. 41.
    Siebelt M, van Tiel J, Waarsing JH et al (2011) Clinically applied CT arthrography to measure the sulphated glycosaminoglycan content of cartilage. Osteoarthr Cartil 19:1183–1189PubMedCrossRefGoogle Scholar
  42. 42.
    Watanabe A, Wada Y, Obata T et al (2006) Delayed gadolinium-enhanced MR to determine glycosaminoglycan concentration in reparative cartilage after autologous chondrocyte implantation: preliminary results. Radiology 239:201–208PubMedCrossRefGoogle Scholar
  43. 43.
    Son M, Goodman SB, Chen W, Hargreaves BA, Gold GE, Levenston ME (2013) Regional variation in T1rho and T2 times in osteoarthritic human menisci: correlation with mechanical properties and matrix composition. Osteoarthr Cartil 21:796–805PubMedCentralPubMedCrossRefGoogle Scholar
  44. 44.
    Williams A, Qian Y, Golla S, Chu CR (2012) UTE-T2* mapping detects sub-clinical meniscus injury after anterior cruciate ligament tear. Osteoarthr Cartil 20:486–494PubMedCrossRefGoogle Scholar

Copyright information

© European Society of Radiology 2014

Authors and Affiliations

  • Jasper van Tiel
    • 1
    • 2
  • Gyula Kotek
    • 2
  • Max Reijman
    • 1
  • Pieter K. Bos
    • 1
  • Esther E. Bron
    • 2
    • 3
  • Stefan Klein
    • 2
    • 3
  • Jan A. N. Verhaar
    • 1
  • Gabriel P. Krestin
    • 2
  • Harrie Weinans
    • 1
    • 4
    • 5
    • 6
  • Edwin H. G. Oei
    • 2
  1. 1.Department of Orthopaedic Surgery, Erasmus MCUniversity Medical CenterRotterdamThe Netherlands
  2. 2.Department of Radiology, Erasmus MCUniversity Medical CenterRotterdamThe Netherlands
  3. 3.Department of Medical Informatics, Erasmus MCUniversity Medical CenterRotterdamThe Netherlands
  4. 4.Department of Biomechanical EngineeringDelft University of TechnologyDelftThe Netherlands
  5. 5.Department of Orthopaedic SurgeryUniversity Medical CenterUtrechtThe Netherlands
  6. 6.Department of RheumatologyUniversity Medical CenterUtrechtThe Netherlands

Personalised recommendations