Skip to main content

Intravoxel incoherent motion diffusion-weighted MR imaging in differentiation of lung cancer from obstructive lung consolidation: comparison and correlation with pharmacokinetic analysis from dynamic contrast-enhanced MR imaging



To test whether parameters derived from intravoxel incoherent motion (IVIM) can be used to distinguish lung cancer from obstructive pulmonary consolidation by comparing them with dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI)-derived parameters and to evaluate the correlation between these quantitative parameters.


A total of 31 lung cancer patients, confirmed by pathology and obstructive consolidations confirmed by positron emission tomography/computed tomography (PET-CT), were recruited. All of them were assessed with structural MRI and IVIM and 17 of them underwent additional DCE-MRI examinations. Parameters derived from IVIM and DCE-MRI in the tumour and consolidation were analysed, and the optimal cut-off values in differential diagnosis were obtained.


ADCtotal, D and f values were lower (P < 0.05), while IAUC60 was higher in lung cancers (P = 0.013) compared with obstructive pulmonary consolidations. According to the ROC curve, ADCtotal outperformed other perfusion and diffusion parameters with the optimal cut-off value of 1.409 × 10-3 mm2/s (AUC = 0.95). Poor correlations were found between parameters derived from IVIM and DCE-MRI.


IVIM-MRI is potentially useful in the differentiation of lung cancer and obstructive pulmonary consolidation. ADCtotal, D and f may be reliable independent discriminating markers, but D * is variable with low diagnostic accuracy.

Key Points

Lung cancer and consolidation differentiation is essential for treatment decision-making.

Perfusion and diffusion characteristics of lesions could help differential diagnosis.

IVIM can separate reflection of tissue diffusivity and microcapillary perfusion.

The relationship between perfusion quantified by IVIM and DCE-MRI is controversial.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3



Positron emission tomography/computed tomography


Dynamic contrast-enhanced


Diffusion weighted imaging


Intravoxel incoherent motion


Standardised uptake value


Regions of interest


Receiver operating characteristic


Area under the curve


Extravascular extracellular space


  1. Murayama S, Onitsuka H, Murakami J, Torii Y, Masuda K, Nishihara K (1993) “CT angiogram sign” in obstructive pneumonitis and pneumonia. J Comput Assist Tomogr 17:609–612

    CAS  PubMed  Article  Google Scholar 

  2. Bourgouin PM, McLoud TC, Fitzgibbon JF et al (1991) Differentiation of bronchogenic carcinoma from postobstructive pneumonitis by magnetic resonance imaging: histopathologic correlation. J Thorac Imaging 6:22–27

    CAS  PubMed  Article  Google Scholar 

  3. Mamata H, Tokuda J, Gill RR et al (2012) Clinical application of pharmacokinetic analysis as a biomarker of solitary pulmonary nodules: dynamic contrast-enhanced MR imaging. Magn Reson Med 68:1614–1622

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  4. Qi LP, Zhang XP, Tang L, Li J, Sun YS, Zhu GY (2009) Using diffusion-weighted MR imaging for tumor detection in the collapsed lung: a preliminary study. Eur Radiol 19:333–341

    PubMed  Article  Google Scholar 

  5. Henzler T, Schmid-Bindert G, Schoenberg SO, Fink C (2010) Diffusion and perfusion MRI of the lung and mediastinum. Eur J Radiol 76:329–336

    PubMed  Article  Google Scholar 

  6. Matoba M, Tonami H, Kondou T et al (2007) Lung carcinoma: diffusion-weighted mr imaging–preliminary evaluation with apparent diffusion coefficient. Radiology 243:570–577

    PubMed  Article  Google Scholar 

  7. Liu H, Liu Y, Yu T, Ye N (2010) Usefulness of diffusion-weighted MR imaging in the evaluation of pulmonary lesions. Eur Radiol 20:807–815

    PubMed  Article  Google Scholar 

  8. Takahara T, Kwee TC (2012) Low b-value diffusion-weighted imaging: emerging applications in the body. J Magn Reson Imaging 35:1266–1273

    PubMed  Article  Google Scholar 

  9. Le Bihan D (2008) Intravoxel incoherent motion perfusion MR imaging: a wake up call. Radiology 249:748–752

    PubMed  Article  Google Scholar 

  10. Yamada I, Aung W, Himeno Y, Nakagawa T, Shibuya H (1999) Diffusion coefficients in abdominal organs and hepatic lesions: evaluation with intravoxel incoherent motion echo-planar MR imaging. Radiology 210:617–623

    CAS  PubMed  Article  Google Scholar 

  11. Guiu B, Petit JM, Capitan V et al (2012) Intravoxel incoherent motion diffusion-weighted imaging in nonalcoholic fatty liver disease: a 3.0-T MR study. Radiology 265:96–103

    PubMed  Article  Google Scholar 

  12. Lu Y, Jansen JF, Stambuk HE et al (2013) Comparing primary tumors and metastatic nodes in head and neck cancer using intravoxel incoherent motion imaging: a preliminary experience. J Comput Assist Tomogr 37:346–352

    PubMed  Article  Google Scholar 

  13. Yoon JH, Lee JM, Yu MH, Kiefer B, Han JK, Choi BI (2014) Evaluation of hepatic focal lesions using diffusion-weighted MR imaging: comparison of apparent diffusion coefficient and intravoxel incoherent motion-derived parameters. J Magn Reson Imaging 39:276–285

    PubMed  Article  Google Scholar 

  14. Lemke A, Laun FB, Klauss M et al (2009) Differentiation of pancreas carcinoma from healthy pancreatic tissue using multiple b-values: comparison of apparent diffusion coefficient and intravoxel incoherent motion derived parameters. Invest Radiol 44:769–775

    PubMed  Article  Google Scholar 

  15. Chandarana H, Lee VS, Hecht E, Taouli B, Sigmund EE (2011) Comparison of biexponential and monoexponential model of diffusion weighted imaging in evaluation of renal lesions: preliminary experience. Invest Radiol 46:285–291

    PubMed  Article  Google Scholar 

  16. Malayeri AA, El Khouli RH, Zaheer A et al (2011) Principles and applications of diffusion-weighted imaging in cancer detection, staging, and treatment follow-up. Radiographics 31:1773–1791

    PubMed  Article  Google Scholar 

  17. Luciani A, Vignaud A, Cavet M et al (2008) Liver cirrhosis: intravoxel incoherent motion MR imaging—pilot study. Radiology 249:891–899

    PubMed  Article  Google Scholar 

  18. Lemke A, Laun FB, Simon D, Stieltjes B, Schad LR (2010) An in vivo verification of the intravoxel incoherent motion effect in diffusion-weighted imaging of the abdomen. Magn Reson Med 64:1580–1585

    PubMed  Article  Google Scholar 

  19. Lai V, Li X, Lee VH, Lam KO, Chan Q, Khong PL (2013) Intravoxel incoherent motion MR imaging: comparison of diffusion and perfusion characteristics between nasopharyngeal carcinoma and post-chemoradiation fibrosis. Eur Radiol 23:2793–2801

    PubMed  Article  Google Scholar 

  20. Shinmoto H, Oshio K, Tanimoto A et al (2009) Biexponential apparent diffusion coefficients in prostate cancer. Magn Reson Imaging 27:355–359

    PubMed  Article  Google Scholar 

  21. Sumi M, Van Cauteren M, Sumi T, Obara M, Ichikawa Y, Nakamura T (2012) Salivary gland tumors: use of intravoxel incoherent motion MR imaging for assessment of diffusion and perfusion for the differentiation of benign from malignant tumors. Radiology 263:770–777

    PubMed  Article  Google Scholar 

  22. Chiaradia M, Baranes L, Van Nhieu JT et al (2014) Intravoxel incoherent motion (IVIM) MR imaging of colorectal liver metastases: are we only looking at tumor necrosis? J Magn Reson Imaging 39:317–325

    PubMed  Article  Google Scholar 

  23. Dyvorne HA, Galea N, Nevers T et al (2013) Diffusion-weighted imaging of the liver with multiple b values: effect of diffusion gradient polarity and breathing acquisition on image quality and intravoxel incoherent motion parameters—a pilot study. Radiology 266:920–929

    PubMed Central  PubMed  Article  Google Scholar 

  24. Andreou A, Koh DM, Collins DJ et al (2013) Measurement reproducibility of perfusion fraction and pseudodiffusion coefficient derived by intravoxel incoherent motion diffusion-weighted MR imaging in normal liver and metastases. Eur Radiol 23:428–434

    CAS  PubMed  Article  Google Scholar 

  25. Naish JH, Kershaw LE, Buckley DL, Jackson A, Waterton JC, Parker GJ (2009) Modeling of contrast agent kinetics in the lung using T1-weighted dynamic contrast-enhanced MRI. Magn Reson Med 61:1507–1514

    PubMed  Article  Google Scholar 

  26. Pauls S, Mottaghy FM, Schmidt SA et al (2008) Evaluation of lung tumor perfusion by dynamic contrast-enhanced MRI. Magn Reson Imaging 26:1334–1341

    PubMed  Article  Google Scholar 

  27. Koh DM, Collins DJ, Orton MR (2011) Intravoxel incoherent motion in body diffusion-weighted MRI: reality and challenges. AJR Am J Roentgenol 196:1351–1361

    PubMed  Article  Google Scholar 

  28. Patel J, Sigmund EE, Rusinek H, Oei M, Babb JS, Taouli B (2010) Diagnosis of cirrhosis with intravoxel incoherent motion diffusion MRI and dynamic contrast-enhanced MRI alone and in combination: preliminary experience. J Magn Reson Imaging 31:589–600

    PubMed  Article  Google Scholar 

  29. Kwong KK, McKinstry RC, Chien D, Crawley AP, Pearlman JD, Rosen BR (1991) CSF-suppressed quantitative single-shot diffusion imaging. Magn Reson Med 21:157–163

    CAS  PubMed  Article  Google Scholar 

  30. Zhang L, Murata Y, Ishida R, Ohashi I, Yoshimura R, Shibuya H (2001) Functional evaluation with intravoxel incoherent motion echo-planar MRI in irradiated salivary glands: a correlative study with salivary gland scintigraphy. J Magn Reson Imaging 14:223–229

    CAS  PubMed  Article  Google Scholar 

Download references


The scientific guarantor of this publication is Jiang Lin M.D., Ph.D; Professor; Deputy Chief of Department of Diagnostic Radiology of Shanghai Zhongshan Hospital, Shanghai Medical College of Fudan University. The authors of this manuscript declare no relationships with any companies, whose products or services may be related to the subject matter of the article. This work is partly supported by a grant from Shanghai Health And Family Planning Committe(No. XBR2013115). No complex statistical methods were necessary for this paper. Institutional Review Board approval was obtained. Written informed consent was obtained from all subjects (patients) in this study. Methodology: prospective, diagnostic or prognostic study, performed at one institution.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Jiang Lin.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, Ll., Lin, J., Liu, K. et al. Intravoxel incoherent motion diffusion-weighted MR imaging in differentiation of lung cancer from obstructive lung consolidation: comparison and correlation with pharmacokinetic analysis from dynamic contrast-enhanced MR imaging. Eur Radiol 24, 1914–1922 (2014).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • MR
  • Diffusion
  • Perfusion
  • Intravoxel incoherent motion
  • Lung cancer