Skip to main content

Advertisement

Log in

Influence of Calcium on Choline Measurements by 1H MR Spectroscopy of Thigh Muscles

  • Magnetic Resonance
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objective

To study the effects of calcium on the choline peak measurements with 1H MR spectroscopy.

Material and methods

The thigh muscles of two cadaveric specimens were prospectively evaluated on a 3 T MR unit before and after the injection of calcium carbonate (up to 0.4322 g). The choline peaks of 147 spectra from 10 different anatomic locations were quantitatively evaluated. The influence of the calcium concentration and its disposition with respect to the main magnetic field were considered. B0 phase maps were used to evaluate field inhomogeneities.

Results

The presence of calcium led to a 43 % underestimation of the choline peak and the choline concentration (p = 0.0002 and 0.0036). The mean choline concentrations before and after CaCO3 injection were 3.53 ± 1.72 mmol/l and 1.58 ± 0.63 mmol/l. The influence of calcium carbonate on the choline peak estimations was proportional to the calcium concentration. There was a significant position-dependent difference in the estimation of the choline peak amplitude (p < 0.0154). Calcium injection led to a measurable increase in field inhomogeneities.

Conclusion

There was a significant underestimation of the choline peak amplitude and concentration in the presence of calcium, which might cause misinterpretations of MR spectra.

Key Points

The presence of calcium led to significant underestimation of choline measurements.

The influence of calcium is dependent on its concentration and distribution.

Quantitative MR spectroscopy of calcified tumours should be interpreted with caution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

1H:

Proton

CaCO3 :

Calcium carbonate

Cho:

Choline compounds (choline, phosphocholine and glycerophosphocholine)

PRESS:

Point resolved spectroscopy

CHESS:

Chemical shift selective water suppression

B0 :

Main magnetic field

References

  1. Sabatier J, Gilard V, Malet-Martino M et al (1999) Characterization of choline compounds with in vitro 1H magnetic resonance spectroscopy for the discrimination of primary brain tumors. Invest Radiol 34:230–235

    Article  CAS  PubMed  Google Scholar 

  2. Baltzer PAT, Dietzel M (2013) Breast lesions: diagnosis by using proton MR spectroscopy at 1.5 and 3.0 T–systematic review and meta-analysis. Radiology 267:735–746

    Article  PubMed  Google Scholar 

  3. Boonsirikamchai P, Choi S, Frank SJ et al (2013) MR imaging of prostate cancer in radiation oncology: what radiologists need to know. Radiographics 33:741–761

    Article  PubMed  Google Scholar 

  4. Fayad LM, Barker PB, Jacobs MA et al (2007) Characterization of musculoskeletal lesions on 3-T proton MR spectroscopy. AJR Am J Roentgenol 188:1513–1520

    Article  PubMed  Google Scholar 

  5. Wehrl HF, Schwab J, Hasenbach K et al (2013) Multimodal elucidation of choline metabolism in a murine glioma model using magnetic resonance spectroscopy and 11C-choline positron emission tomography. Cancer Res 73:1470–1480

    Article  CAS  PubMed  Google Scholar 

  6. Russo F, Mazzetti S, Grignani G et al (2012) In vivo characterisation of soft tissue tumours by 1.5-T proton MR spectroscopy. Eur Radiol 22:1131–1139

    Article  CAS  PubMed  Google Scholar 

  7. Fayad LM, Wang X, Salibi N et al (2010) A feasibility study of quantitative molecular characterization of musculoskeletal lesions by proton MR spectroscopy at 3 T. AJR Am J Roentgenol 195:W69–W75

    Article  PubMed Central  PubMed  Google Scholar 

  8. Mizukoshi W, Kozawa E, Inoue K et al (2013) 1H MR spectroscopy with external reference solution at 1.5 T for differentiating malignant and benign breast lesions: comparison using qualitative and quantitative approaches. Eur Radiol 23:75–83

    Article  PubMed  Google Scholar 

  9. Wang C-K, Li C-W, Hsieh T-J et al (2012) In vivo 1H MRS for musculoskeletal lesion characterization: which factors affect diagnostic accuracy? NMR Biomed 25:359–368

    Article  PubMed  Google Scholar 

  10. Fayad LM, Bluemke DA, McCarthy EF et al (2006) Musculoskeletal tumors: use of proton MR spectroscopic imaging for characterization. J Magn Reson Imaging JMRI 23:23–28

    Article  Google Scholar 

  11. Chen Y, Cai S, Cai C et al (2012) High-resolution NMR spectroscopy in inhomogeneous fields via Hadamard-encoded intermolecular double-quantum coherences. NMR Biomed 25:1088–1094

    Article  CAS  PubMed  Google Scholar 

  12. Hardman RL, El-Merhi F, Jung AJ et al (2011) Fast T2*-weighted MRI of the prostate at 3 Tesla. J Magn Reson Imaging JMRI 33:902–907

    Article  Google Scholar 

  13. Fayad LM, Salibi N, Wang X et al (2010) Quantification of muscle choline concentrations by proton MR spectroscopy at 3 T: technical feasibility. AJR Am J Roentgenol 194:W73–W79

    Article  PubMed Central  PubMed  Google Scholar 

  14. Brodziak-Dopierała B, Kowol J, Kwapuliński J et al (2011) Lead and calcium content in the human hip joint. Biol Trace Elem Res 144:6–16

    Article  PubMed  Google Scholar 

  15. Combes C, Rey C (2010) Amorphous calcium phosphates: synthesis, properties and uses in biomaterials. Acta Biomater 6:3362–3378

    Article  CAS  PubMed  Google Scholar 

  16. Rey C, Combes C, Drouet C, Glimcher MJ (2009) Bone mineral: update on chemical composition and structure. Osteoporos Int J 20:1013–1021

    Article  CAS  Google Scholar 

  17. Hopkins JA, Wehrli FW (1997) Magnetic susceptibility measurement of insoluble solids by NMR: magnetic susceptibility of bone. Magn Reson Med 37:494–500

    Article  CAS  PubMed  Google Scholar 

  18. Kumar M, Gupta R (2008) Diamagnetic bulk susceptibility data of C14H11BrN2O3S. In: Gupta RR (ed) Diamagnetic Susceptibility Org. Compd. Oils Paraffins Polyethylenes. Springer Berlin Heidelberg, Berlin, pp 3237–3238

    Chapter  Google Scholar 

  19. Larsen RM (1998) Lanczos bidiagonalization with partial reorthogonalization. Department of Computer Science, Aarhus University. Technical report, DAIMI PB-357

  20. Provencher SW (1993) Estimation of metabolite concentrations from localized in vivo proton NMR spectra. Magn Reson Med 30:672–679

    Article  CAS  PubMed  Google Scholar 

  21. Klose U (1990) In vivo proton spectroscopy in presence of eddy currents. Magn Reson Med 14:26–30

    Article  CAS  PubMed  Google Scholar 

  22. Pichardo JC, Milner RJ, Bolch WE (2011) MRI measurement of bone marrow cellularity for radiation dosimetry. J Nucl Med 52:1482–1489

    Article  CAS  PubMed  Google Scholar 

  23. Plzak J, Kalitova P, Urbanova M, Betka J (2011) Subcutaneous calcification in the pectoralis major flap: a late complication of radiotherapy. Br J Radiol 84:e221–e223

    Article  CAS  PubMed  Google Scholar 

  24. Kennedy GA, Restall J, Morris K, Ravi Kumar A (2010) Post-therapy calcification can result in false-positive fluorodeoxyglucose positron emission tomography scans in patients with non-Hodgkin’s lymphoma. Leuk Lymphoma 51:348–349

    Article  CAS  PubMed  Google Scholar 

  25. Baik H-M, Su M-Y, Yu H et al (2006) Quantification of choline-containing compounds in malignant breast tumors by 1H MR spectroscopy using water as an internal reference at 1.5 T. MAGMA New York N Y 19:96–104

    CAS  Google Scholar 

  26. Lee CW, Lee J-H, Kim DH et al (2010) Proton magnetic resonance spectroscopy of musculoskeletal lesions at 3 T with metabolite quantification. Clin Imaging 34:47–52

    Article  CAS  PubMed  Google Scholar 

  27. Helms G (2008) The principles of quantification applied to in vivo proton MR spectroscopy. Eur J Radiol 67:218–229

    Article  PubMed  Google Scholar 

  28. Constans JM et al (2011) Effects of reactive oxygen species on metabolism monitored by longitudinal 1H single voxel MRS follow-up in patients with mitochondrial disease or cerebral tumors. J Phys 261:012011

    Google Scholar 

  29. Vermathen P, Boesch C, Kreis R (2003) Mapping fiber orientation in human muscle by proton MR spectroscopic imaging. Magn Reson Med 49:424–432

    Article  PubMed  Google Scholar 

  30. Suh JH, Gardner JM, Kee KH et al (2008) Calcifications in prostate and ejaculatory system: a study on 298 consecutive whole mount sections of prostate from radical prostatectomy or cystoprostatectomy specimens. Ann Diagn Pathol 12:165–170

    Article  PubMed  Google Scholar 

  31. Tse GM, Tan P-H, Pang ALM et al (2008) Calcification in breast lesions: pathologists’ perspective. J Clin Pathol 61:145–151

    Article  CAS  PubMed  Google Scholar 

  32. Resnick D (2002) Diagnosis of Bone and Joint Disorders, 5. 4th ed. Philadelphia, WB Saunders

  33. Tanaka Y, Takeuchi K, Maeda T (1975) Calcification in gliomas: first report with special reference to roentgenological calcification (author’s transl). No Shinkei Geka 3:219–225

    CAS  PubMed  Google Scholar 

  34. Brown MA, Semelka RC (2010). MRI: basic principles and applications, 4th edn. John Wiley & Sons, Hoboken, New Jersey

Download references

Acknowledgments

This work was supported by the French Society of Radiology (SFR, Societé Française de Radiologie) through a research grant. The authors wish to thank the FEDER and Region Lorraine for their support on this research.

The scientific guarantor of this publication is Prof. Alain Blum, Service d’imagerie Guilloz, CHU-Nancy, France. The authors of this manuscript declare no relationships with any companies whose products or services may be related to the subject matter of the article. One of the authors has significant statistical expertise. Gabriela Hossu is an expert on statistics. Institutional review board approval was not required because this work was performed on fully anonymised cadaveric specimens donated to science. Methodology: prospective, experimental, multicentre study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro A. Gondim Teixeira.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Teixeira, P.A.G., Hossu, G., Kauffmann, F. et al. Influence of Calcium on Choline Measurements by 1H MR Spectroscopy of Thigh Muscles. Eur Radiol 24, 1309–1319 (2014). https://doi.org/10.1007/s00330-014-3131-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-014-3131-z

Keywords

Navigation