Advertisement

European Radiology

, Volume 24, Issue 3, pp 581–586 | Cite as

Diffusivity of intraorbital lymphoma vs. IgG4-related DISEASE: 3D turbo field echo with diffusion-sensitised driven-equilibrium preparation technique

  • Akio HiwatashiEmail author
  • Takashi Yoshiura
  • Osamu Togao
  • Koji Yamashita
  • Kazufumi Kikuchi
  • Yoko Fujita
  • Hiroshi Yoshikawa
  • Takaomi Koga
  • Makoto Obara
  • Hiroshi Honda
Head and Neck

Abstract

Objectives

3D turbo field echo with diffusion-sensitised driven-equilibrium preparation (DSDE-TFE) is a novel non-echo planar technique for diffusion-weighted (DW) imaging. The purpose of this study was to differentiate intraorbital lymphoma from immunoglobulin G4-related disease (IgG4-RD) using the apparent diffusion coefficient (ADC) derived from DSDE-TFE.

Methods

Fifteen patients with lymphomas and 8 with IgG4-RDs underwent imaging. ADC and signal intensities compared with normal grey matter on T1-weighted images, fat-suppressed T2-weighted images and fat-suppressed postcontrast T1-weighted images were measured. Statistical analyses were performed using the Mann–Whitney U test and receiver operating characteristic (ROC) analysis.

Results

Intraorbital lesions were clearly visualised on DSDE-TFE without obvious geometrical distortion. The ADC of lymphoma (1.25 ± 0.50 × 10−3 mm2/s; mean ± standard deviation) was significantly lower than that of IgG4-RD (1.67 ± 0.84 × 10−3 mm2/s; P < 0.05). Conventional sequences could not separate lymphoma from IgG4-RD (0.93 ± 0.18 vs. 0.94 ± 0.21 on T1-weighted images, 0.92 ± 0.17 vs. 0.95 ± 0.14 on T2-weighted images and 2.03 ± 0.35 vs. 2.30 ± 0.58 on postcontrast T1-weighted images, for lymphoma and IgG4-RD, respectively; P > 0.05). ROC analysis showed the best diagnostic performance with ADC.

Conclusion

The apparent diffusion coefficient derived from diffusion-sensitised driven-equilibrium preparation techniques may help to differentiate lymphoma from immunoglobulin G4-related disease.

Key Points

Distinguishing between orbital lymphoma and immunoglobulin G4-related disease can be difficult

Intraorbital lesions were clearly visualised on diffusion-sensitised driven-equilibrium preparation magnetic resonance techniques.

Variations in field homogeneity do not affect DSDE-TFE techniques all that much.

ADCs derived from DSDE-TFE may help differentiate lymphoma from IgG4-RD.

Keywords

Diffusion-weighted imaging Apparent diffusion coefficient Lymphoma Immunoglobulin G4-related disease Orbit 

Notes

Acknowledgment

Makoto Obara is an employee of Philips Electronics Japan. He is not involved in data analysis in this study.

References

  1. 1.
    Le Bihan D, Breton E, Lallemand D, Grenier P, Cabanis E, Laval-Jeantet M (1986) MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology 161:401–407PubMedGoogle Scholar
  2. 2.
    Provenzale JM, Sorensen AG (1999) Diffusion-weighted MR imaging in acute stroke: theoretic considerations and clinical applications. AJR Am J Roentgenol 173:1459–1467PubMedCrossRefGoogle Scholar
  3. 3.
    Guo AC, Cummings TJ, Dash RC, Provenzale JM (2002) Lymphomas and high-grade astrocytomas: comparison of water diffusibility and histologic characteristics. Radiology 224:177–183PubMedCrossRefGoogle Scholar
  4. 4.
    Yamasaki F, Kurisu K, Satoh K et al (2005) Apparent diffusion coefficient of human brain tumors at MR imaging. Radiology 235:985–991PubMedCrossRefGoogle Scholar
  5. 5.
    Yamashita K, Yoshiura T, Hiwatashi A et al (2013) Differentiating primary CNS lymphoma from glioblastoma multiforme: assessment using arterial spin labeling, diffusion-weighted imaging, and (18)F-fluorodeoxyglucose positron emission tomography. Neuroradiology 55:135–143PubMedCrossRefGoogle Scholar
  6. 6.
    Matsushima N, Maeda M, Umino M, Suzawa N, Yamada T, Takeda K (2012) Relation between FDG uptake and apparent diffusion coefficients in glioma and malignant lymphoma. Ann Nucl Med 26:262–271PubMedCrossRefGoogle Scholar
  7. 7.
    Choi JW, Kim SY, Moon KC, Cho JY, Kim SH (2012) Immunoglobulin G4-related sclerosing disease involving the urethra: case report. Korean J Radiol 13:803–807PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Taniguchi T, Kobayashi H, Nishikawa K et al (2009) Diffusion-weighted magnetic resonance imaging in autoimmune pancreatitis. Jpn J Radiol 27:138–142PubMedCrossRefGoogle Scholar
  9. 9.
    Razek AA, Elkhamary S, Mousa A (2011) Differentiation between benign and malignant orbital tumors at 3-T diffusion MR-imaging. Neuroradiology 53:517–522PubMedCrossRefGoogle Scholar
  10. 10.
    de Graaf P, Pouwels PJ, Rodjan F et al (2012) Single-shot turbo spin-echo diffusion-weighted imaging for retinoblastoma: initial experience. AJNR Am J Neuroradiol 33:110–118PubMedCrossRefGoogle Scholar
  11. 11.
    Hiwatashi A, Yoshiura T, Togao O et al (2013) Evaluation of diffusivity in anterior lobe of the pituitary gland: 3D turbo field echo with diffusion-sensitized driven-equilibrium preparation. AJNR Am J Neuroradiol. doi: 10.3174/ajnr.A3620 PubMedGoogle Scholar
  12. 12.
    Politi LS, Forghani R, Godi C et al (2010) Ocular adnexal lymphoma: diffusion-weighted MR imaging for differential diagnosis and therapeutic monitoring. Radiology 256:565–574PubMedCrossRefGoogle Scholar
  13. 13.
    Sepahdari AR, Aakalu VK, Setabutr P, Shiehmorteza M, Naheedy JH, Mafee MF (2010) Indeterminate orbital masses: restricted diffusion at MR imaging with echo-planar diffusion-weighted imaging predicts malignancy. Radiology 256:554–564PubMedCrossRefGoogle Scholar
  14. 14.
    Obara M, Takahara T, Honda M, Kwee T, Imai Y, Van Gauteren M (2011) Diffusion weighted MR nerve sheath imaging (DW-NSI) using diffusion-sensitized driven-equilibrium (DSDE). Proc Int Soc Magn Reson Med 19:4023Google Scholar
  15. 15.
    Nezafat R, Stuber M, Ouwerkerk R, Gharib AM, Desai MY, Pettigrew RI (2006) B1-insensitive T2 preparation for improved coronary magnetic resonance angiography at 3 T. Magn Reson Med 55:858–864PubMedCrossRefGoogle Scholar
  16. 16.
    Masaki Y, Sugai S, Umehara H (2010) IgG4-related diseases including Mikulicz's disease and sclerosing pancreatitis: diagnostic insights. J Rheumatol 37:1380–1385PubMedCrossRefGoogle Scholar
  17. 17.
    Umehara H, Okazaki K, Masaki Y et al (2012) Comprehensive diagnostic criteria for IgG4-related disease (IgG4-RD), 2011. Mod Rheumatol 22:21–30PubMedCrossRefGoogle Scholar
  18. 18.
    Deshpande V (2012) The pathology of IgG4-related disease: critical issues and challenges. Semin Diagn Pathol 29:191–196PubMedCrossRefGoogle Scholar
  19. 19.
    Stone JH, Zen Y, Deshpande V (2012) IgG4-related disease. N Engl J Med 366:539–551PubMedCrossRefGoogle Scholar
  20. 20.
    Koktzoglou I, Li D (2007) Diffusion-prepared segmented steady-state free precession: application to 3D black-blood cardiovascular magnetic resonance of the thoracic aorta and carotid artery walls. J Cardiovasc Magn Reson 9:33–42PubMedCrossRefGoogle Scholar
  21. 21.
    Wang J, Yarnykh VL, Hatsukami T, Chu B, Balu N, Yuan C (2007) Improved suppression of plaque-mimicking artifacts in black-blood carotid atherosclerosis imaging using a multislice motion-sensitized driven-equilibrium (MSDE) turbo spin-echo (TSE) sequence. Magn Reson Med 58:973–981PubMedCrossRefGoogle Scholar
  22. 22.
    Nagao E, Yoshiura T, Hiwatashi A et al (2011) 3D turbo spin-echo sequence with motion-sensitized driven-equilibrium preparation for detection of brain metastases on 3T MR imaging. AJNR Am J Neuroradiol 32:664–670PubMedCrossRefGoogle Scholar
  23. 23.
    Coremans J, Spanoghe M, Budinsky L et al (1997) A comparison between different imaging strategies for diffusion measurements with the centric phase-encoded turboFLASH sequence. J Magn Reson 124:323–342PubMedCrossRefGoogle Scholar
  24. 24.
    Thomas DL, Pell GS, Lythgoe MF, Gadian DG, Ordidge RJ (1998) A quantitative method for fast diffusion imaging using magnetization-prepared TurboFLASH. Magn Reson Med 39:950–960PubMedCrossRefGoogle Scholar

Copyright information

© European Society of Radiology 2013

Authors and Affiliations

  • Akio Hiwatashi
    • 1
    Email author
  • Takashi Yoshiura
    • 1
  • Osamu Togao
    • 1
    • 2
  • Koji Yamashita
    • 1
  • Kazufumi Kikuchi
    • 1
  • Yoko Fujita
    • 3
  • Hiroshi Yoshikawa
    • 3
  • Takaomi Koga
    • 4
  • Makoto Obara
    • 5
  • Hiroshi Honda
    • 1
  1. 1.Department of Clinical Radiology, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
  2. 2.Department of Molecular Imaging and Diagnosis, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
  3. 3.Department of Ophthalmology, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
  4. 4.Department of Pathophysiological and Experimental Pathology, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
  5. 5.MR Clinical SciencePhilips Electronics JapanTokyoJapan

Personalised recommendations