Skip to main content
Log in

Automated Quantification of Epicardial Adipose Tissue Using CT Angiography: Evaluation of a Prototype Software

  • Cardiac
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objectives

This study evaluated the performance of a novel automated software tool for epicardial fat volume (EFV) quantification compared to a standard manual technique at coronary CT angiography (cCTA).

Methods

cCTA data sets of 70 patients (58.6 ± 12.9 years, 33 men) were retrospectively analysed using two different post-processing software applications. Observer 1 performed a manual single-plane pericardial border definition and EFVM segmentation (manual approach). Two observers used a software program with fully automated 3D pericardial border definition and EFVA calculation (automated approach). EFV and time required for measuring EFV (including software processing time and manual optimization time) for each method were recorded. Intraobserver and interobserver reliability was assessed on the prototype software measurements. T test, Spearman’s rho, and Bland–Altman plots were used for statistical analysis.

Results

The final EFVA (with manual border optimization) was strongly correlated with the manual axial segmentation measurement (60.9 ± 33.2 mL vs. 65.8 ± 37.0 mL, rho = 0.970, P < 0.001). A mean of 3.9 ± 1.9 manual border edits were performed to optimize the automated process. The software prototype required significantly less time to perform the measurements (135.6 ± 24.6 s vs. 314.3 ± 76.3 s, P < 0.001) and showed high reliability (ICC > 0.9).

Conclusions

Automated EFVA quantification is an accurate and time-saving method for quantification of EFV compared to established manual axial segmentation methods.

Key Points

Manual epicardial fat volume quantification correlates with risk factors but is time-consuming.

The novel software prototype automates measurement of epicardial fat volume with good accuracy.

This novel approach is less time-consuming and could be incorporated into clinical workflow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

CAD:

coronary artery disease

cCTA:

coronary computed tomography angiography

CTA:

computed tomography angiography

EAT:

epicardial adipose tissue

EFV:

epicardial fat volume

References

  1. Bastarrika G, Broncano J, Schoepf UJ et al (2010) Relationship between coronary artery disease and epicardial adipose tissue quantification at cardiac CT: comparison between automatic volumetric measurement and manual bidimensional estimation. Acad Radiol 17:727–734

    Article  PubMed  Google Scholar 

  2. Rosito GA, Massaro JM, Hoffmann U et al (2008) Pericardial fat, visceral abdominal fat, cardiovascular disease risk factors, and vascular calcification in a community-based sample: the Framingham Heart Study. Circulation 117:605–613

    Article  PubMed  Google Scholar 

  3. Taguchi R, Takasu J, Itani Y et al (2001) Pericardial fat accumulation in men as a risk factor for coronary artery disease. Atherosclerosis 157:203–209

    Article  CAS  PubMed  Google Scholar 

  4. Schlett CL, Ferencik M, Kriegel MF et al (2012) Association of pericardial fat and coronary high-risk lesions as determined by cardiac CT. Atherosclerosis 222:129–134

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Mazurek T, Zhang L, Zalewski A et al (2003) Human epicardial adipose tissue is a source of inflammatory mediators. Circulation 108:2460–2466

    Article  PubMed  Google Scholar 

  6. Sacks HS, Fain JN (2007) Human epicardial adipose tissue: a review. Am Heart J 153:907–917

    Article  CAS  PubMed  Google Scholar 

  7. Apfaltrer P, Schoepf UJ, Vliegenthart R et al (2011) Coronary computed tomography–present status and future directions. Int J Clin Pract Suppl. doi:10.1111/j.1742-1241.2011.02784.x:3-13

    PubMed  Google Scholar 

  8. Gruettner J, Fink C, Walter T et al (2013) Coronary computed tomography and triple rule out CT in patients with acute chest pain and an intermediate cardiac risk profile. Part 1: impact on patient management. Eur J Radiol 82:100–105

    Article  PubMed  Google Scholar 

  9. Moscariello A, Vliegenthart R, Schoepf UJ et al (2012) Coronary CT angiography versus conventional cardiac angiography for therapeutic decision making in patients with high likelihood of coronary artery disease. Radiology 265:385–392

    Article  PubMed  Google Scholar 

  10. Ebersberger U, Eilot D, Goldenberg R et al (2013) Fully automated derivation of coronary artery calcium scores and cardiovascular risk assessment from contrast medium-enhanced coronary CT angiography studies. Eur Radiol 23:650–657

    Article  PubMed  Google Scholar 

  11. Nichols JH, Samy B, Nasir K et al (2008) Volumetric measurement of pericardial adipose tissue from contrast-enhanced coronary computed tomography angiography: a reproducibility study. J Cardiovasc Comput Tomogr 2:288–295

    Article  PubMed Central  PubMed  Google Scholar 

  12. Wheeler GL, Shi R, Beck SR et al (2005) Pericardial and visceral adipose tissues measured volumetrically with computed tomography are highly associated in type 2 diabetic families. Invest Radiol 40:97–101

    Article  PubMed  Google Scholar 

  13. Park MJ, Jung JI, Oh YS, Youn HJ (2010) Assessment of epicardial fat volume with threshold-based 3-dimensional segmentation in CT: comparison with the 2-dimensional short axis-based method. Korean Circ J 40:328–333

    Article  PubMed Central  PubMed  Google Scholar 

  14. Iacobellis G, Bianco AC (2011) Epicardial adipose tissue: emerging physiological, pathophysiological and clinical features. Trends Endocrinol Metab 22:450–457

    Article  CAS  PubMed  Google Scholar 

  15. Iacobellis G, Corradi D, Sharma AM (2005) Epicardial adipose tissue: anatomic, biomolecular and clinical relationships with the heart. Nat Clin Pract Cardiovasc Med 2:536–543

    Article  PubMed  Google Scholar 

  16. Iacobellis G, Ribaudo MC, Assael F et al (2003) Echocardiographic epicardial adipose tissue is related to anthropometric and clinical parameters of metabolic syndrome: a new indicator of cardiovascular risk. J Clin Endocrinol Metab 88:5163–5168

    Article  CAS  PubMed  Google Scholar 

  17. Sicari R, Sironi AM, Petz R et al (2011) Pericardial rather than epicardial fat is a cardiometabolic risk marker: an MRI vs echo study. J Am Soc Echocardiogr 24:1156–1162

    Article  PubMed  Google Scholar 

  18. Marwan M, Achenbach S (2013) Quantification of epicardial fat by computed tomography: why, when and how? J Cardiovasc Comput Tomogr 7:3–10

    Article  PubMed  Google Scholar 

  19. Dey D, Suzuki Y, Suzuki S et al (2008) Automated quantitation of pericardiac fat from noncontrast CT. Invest Radiol 43:145–153

    Article  PubMed  Google Scholar 

  20. Xu Y, Cheng X, Hong K, Huang C, Wan L (2012) How to interpret epicardial adipose tissue as a cause of coronary artery disease: a meta-analysis. Coron Artery Dis 23:227–233

    Article  PubMed  Google Scholar 

  21. Greif M, Becker A, von Ziegler F et al (2009) Pericardial adipose tissue determined by dual source CT is a risk factor for coronary atherosclerosis. Arterioscler Thromb Vasc Biol 29:781–786

    Article  CAS  PubMed  Google Scholar 

  22. Tamarappoo B, Dey D, Shmilovich H et al (2010) Increased pericardial fat volume measured from noncontrast CT predicts myocardial ischemia by SPECT. JACC Cardiovasc Imaging 3:1104–1112

    Article  PubMed Central  PubMed  Google Scholar 

  23. Mahabadi AA, Berg MH, Lehmann N et al (2013) Association of epicardial fat with cardiovascular risk factors and incident myocardial infarction in the general population: the Heinz Nixdorf Recall Study. J Am Coll Cardiol 61:1388–1395

    Article  PubMed  Google Scholar 

  24. Shimabukuro M, Hirata Y, Tabata M et al (2013) Epicardial adipose tissue volume and adipocytokine imbalance are strongly linked to human coronary atherosclerosis. Arterioscler Thromb Vasc Biol 33:1077–1084

    Article  CAS  PubMed  Google Scholar 

  25. Cheng VY, Dey D, Tamarappoo B et al (2010) Pericardial fat burden on ECG-gated noncontrast CT in asymptomatic patients who subsequently experience adverse cardiovascular events. JACC Cardiovasc Imaging 3:352–360

    Article  PubMed Central  PubMed  Google Scholar 

  26. Nakanishi R, Rajani R, Cheng VY et al (2011) Increase in epicardial fat volume is associated with greater coronary artery calcification progression in subjects at intermediate risk by coronary calcium score: a serial study using non-contrast cardiac CT. Atherosclerosis 218:363–368

    Article  CAS  PubMed  Google Scholar 

  27. Nakazato R, Dey D, Cheng VY et al (2012) Epicardial fat volume and concurrent presence of both myocardial ischemia and obstructive coronary artery disease. Atherosclerosis 221:422–426

    Article  CAS  PubMed  Google Scholar 

  28. Achenbach S, Boehmer K, Pflederer T et al (2010) Influence of slice thickness and reconstruction kernel on the computed tomographic attenuation of coronary atherosclerotic plaque. J Cardiovasc Comput Tomogr 4:110–115

    Article  PubMed  Google Scholar 

  29. Birnbaum BA, Hindman N, Lee J, Babb JS (2007) Multi-detector row CT attenuation measurements: assessment of intra- and interscanner variability with an anthropomorphic body CT phantom. Radiology 242:109–119

    Article  PubMed  Google Scholar 

  30. Baker AR, Silva NF, Quinn DW et al (2006) Human epicardial adipose tissue expresses a pathogenic profile of adipocytokines in patients with cardiovascular disease. Cardiovasc Diabetol 5:1

    Article  PubMed Central  PubMed  Google Scholar 

  31. Cheng KH, Chu CS, Lee KT et al (2008) Adipocytokines and proinflammatory mediators from abdominal and epicardial adipose tissue in patients with coronary artery disease. Int J Obes (Lond) 32:268–274

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Dr. Schoepf is a consultant for and receives research support from Bayer, Bracco, GE, Medrad, and Siemens. C. Canstein is a Siemens employee. The other authors have no conflict of interest to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. Joseph Schoepf.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spearman, J.V., Meinel, F.G., Schoepf, U.J. et al. Automated Quantification of Epicardial Adipose Tissue Using CT Angiography: Evaluation of a Prototype Software. Eur Radiol 24, 519–526 (2014). https://doi.org/10.1007/s00330-013-3052-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-013-3052-2

Keywords

Navigation