Skip to main content
Log in

Acoustic radiation force impulse (ARFI) in the evaluation of the renal parenchymal stiffness in paediatric patients with vesicoureteral reflux: preliminary results

  • Pediatric
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objectives

To prospectively evaluate acoustic radiation force impulse (ARFI) imaging of the kidneys in children with and without chronic renal disease.

Methods

Twenty-eight children (age range 9–16 years) with primary or secondary vesicoureteral reflux (≥ grade III) underwent scintigraphy and ultrasound with ARFI. Kidneys were divided—according to scintigraphy—into “affected” and “contralateral”; the results were compared with 16 age-matched healthy subjects. An ARFI value, expressed as speed (m/s) of wave propagation through the tissue, was calculated for each kidney through the mean of the values obtained at the upper, middle and lower third. The Wilcoxon test was used; P values <0.05 were considered statistically significant.

Results

The mean ARFI values obtained in the “affected” kidneys (5.70 ± 1.71 m/s) were significantly higher than those measured in both “contralateral” (4.09 ± 0.97, P < 0.0001) and “healthy” kidneys (3.13 ± 0.09, P < 0.0001). The difference between values in the “contralateral” kidneys and “healthy” ones was significant (P < 0.0001). The “affected” kidneys with secondary reflux had mean ARFI values (6.59 ± 1.45) significantly higher than those with primary reflux (5.35 ± 1.72).

Conclusions

ARFI values decrease from kidneys with secondary vesicoureteral reflux to kidneys with primary reflux to unaffected kidneys contralateral to reflux to normal kidneys.

Key points

• Acoustic radiation force impulse (ARFI) can quantify tissue elasticity during ultrasound examinations.

• Kidneys are highly heterogeneous and difficult to evaluate with ARFI.

• Kidneys damaged by vesicoureteral reflux are stiffer than normal.

• ARFI can identify initial damage in macroscopically normal kidneys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hogg RJ, Furth S, Lemley KV et al (2003) National kidney foundation’s kidney disease outcomes quality initiative clinical practice guidelines for chronic kidney disease in children and adolescents: evaluation, classification, and stratification. Pediatrics 111:1416–1421

    Article  PubMed  Google Scholar 

  2. Ardissino G, Daccò V, Testa S et al (2003) Epidemiology of chronic renal failure in children: data from the ItalKid project. Pediatrics 111:e382–e387

    Article  PubMed  Google Scholar 

  3. Lim R (2009) Vesicoureteral reflux and urinary tract infection: evolving practices and current controversies in pediatric imaging. AJR Am J Roentgenol 192:1197–1208

    Article  PubMed  Google Scholar 

  4. Williams G, Fletcher JT, Alexander SI, Craig JC (2008) Vesicoureteral reflux. J Am Soc Nephrol 19:847–862

    Article  PubMed  CAS  Google Scholar 

  5. Peters C, Rushton HG (2010) Vesicoureteral reflux associated renal damage: congenital reflux nephropathy and acquired renal scarring. J Urol 184:265–273

    Article  PubMed  Google Scholar 

  6. Greenbaum LA, Mesrobian HG (2006) Vesicoureteral reflux. Pediatr Clin North Am 53:413–427

    Article  PubMed  Google Scholar 

  7. Coley BD (2011) The future of pediatric US. Pediatr Radiol 41:S220–S227

    Article  PubMed  Google Scholar 

  8. Nightingale K, Soo MS, Nightingale R, Trahey G (2002) Acoustic radiation force impulse imaging: in vivo demonstration of clinical feasibility. Ultrasound Med Biol 28:227–235

    Article  PubMed  Google Scholar 

  9. Fahey BJ, Nightingale KR, Nelson RC et al (2005) Acoustic radiation force impulse imaging of the abdomen: demonstration of feasibility and utility. Ultrasound Med Biol 31:1185–1198

    Article  PubMed  Google Scholar 

  10. Palmeri ML, Wang MH, Rouze NC et al (2011) Noninvasive evaluation of hepatic fibrosis using acoustic radiation force-based shear stiffness in patients with nonalcoholic fatty liver disease. J Hepatol 55:666–672

    Article  PubMed  Google Scholar 

  11. D’Onofrio M, Gallotti A, Mucelli RP (2010) Tissue quantification with acoustic radiation force impulse imaging: Measurement repeatability and normal values in the healthy liver. AJR Am J Roentgenol 195:132–136

    Article  PubMed  Google Scholar 

  12. Yoneda M, Suzuki K, Kato S et al (2010) Nonalcoholic fatty liver disease: US-based acoustic radiation force impulse elastography. Radiology 256:640–647

    Article  PubMed  Google Scholar 

  13. Bai M, Du L, Gu J et al (2012) Virtual touch tissue quantification using acoustic radiation force impulse technology: initial clinical experience with solid breast masses. J Ultrasound Med 31:289–294

    PubMed  Google Scholar 

  14. Tozaki M, Isobe S, Fukuma E (2011) Preliminary study of ultrasonographic tissue quantification of the breast using the acoustic radiation force impulse (ARFI) technology. Eur J Radiol 80:e182–e187

    Article  PubMed  Google Scholar 

  15. Gu J, Du L, Bai M et al (2012) Preliminary study on the diagnostic value of acoustic radiation force impulse technology for differentiating between benign and malignant thyroid nodules. J Ultrasound Med 31:763–771

    PubMed  Google Scholar 

  16. Kaminuma C, Tsushima Y, Matsumoto N, Kurabayashi T (2011) Reliable measurement procedure of virtual touch tissue quantification with acoustic radiation force impulse imaging. J Ultrasound Med 30:745–751

    PubMed  Google Scholar 

  17. Kim JE, Lee JY, Kim YJ et al (2010) Acoustic radiation force impulse elastography for chronic liver disease: comparison with ultrasound-based scores of experienced radiologists, Child-Pugh scores and liver function tests. Ultrasound Med 36:1637–1643

    Article  Google Scholar 

  18. Sporea I, Sirli R, Bota S et al (2012) Comparative study concerning the value of Acoustic Radiation Force Impulse Elastography (ARFI) in comparison with transient elastography (TE) for the assessment of liver fibrosis in patients with chronic hepatitis B and C. Ultrasound Med Biol 38:1310–1316

    Article  PubMed  Google Scholar 

  19. Friedrich-Rust M, Wunder K, Kriener S et al (2009) Liver fibrosis in viral hepatitis: noninvasive assessment with acoustic radiation force impulse imaging versus transient elastography. Radiology 252:595–604

    Article  PubMed  Google Scholar 

  20. Piscaglia F, Salvatore V, Di Donato R et al (2011) Accuracy of Virtual Touch Acoustic Radiation Force Impulse (ARFI) imaging for the diagnosis of cirrhosis during liver ultrasonography. Ultraschall Med 32:167–175

    Article  PubMed  CAS  Google Scholar 

  21. Monti L, Manco M, Lo Zupone C et al (2012) Acoustic radiation force impulse (ARFI) with Virtual Touch Tissue Quantification in liver disease associated with cystic fibrosis in children. Radiol Med 117:1408–1418

    Article  PubMed  CAS  Google Scholar 

  22. Leibowitz RL, Olbing H, Parkkulainen KV (1985) International grading of vescicoureteric reflux. International reflux study in children. Pediatr Radiol 15:105–109

    Article  Google Scholar 

  23. Lassman M, Biassoni L, Monsieurs M, Franzius C, Jacobs F (2007) The new EANM paediatric dosage card. Eur J Nucl Med Mol Imaging 34:796–798

    Article  Google Scholar 

  24. Rushton HG, Majd M (1992) Dimercaptosuccinic acid renal scintigraphy for the evaluation of pyelonephritis and scarring: a review of experimental and clinical studies. J Urol 148:1726–1732

    PubMed  CAS  Google Scholar 

  25. Riccabona M, Avni FE, Blickman JG et al (2009) Imaging recommendations in paediatric uroradiology: minutes of the ESPR uroradiology task force session on childhood obstructive uropathy, high-grade fetal hydronephrosis, childhood haematuria, and urolithiasis in childhood. ESPR Annual Congress, Edinburgh, UK, June 2008. Pediatr Radiol 39:891–898

    Article  PubMed  Google Scholar 

  26. Riccabona M, Avni FE, Blickman JG et al (2008) Imaging recommendations in paediatric uroradiology: minutes of the ESPR workgroup session on urinary tract infection, fetal hydronephrosis, urinary tract ultrasonography and voiding cystourethrography, Barcelona, Spain, June 2007. Pediatr Radiol 38:138–145

    Article  PubMed  Google Scholar 

  27. Brader P, Riccabona M, Schwarz T et al (2008) Value of comprehensive renal ultrasound in children with acute urinary tract infection for assessment of renal involvement: comparison with DMSA scintigraphy and final diagnosis. Eur Radiol 18:2981–2989

    Article  PubMed  Google Scholar 

  28. Goertz RS, Amann K, Heide R et al (2011) An abdominal and thyroid status with Acoustic Radiation Force Impulse Elastometry—a feasibility study: Acoustic Radiation Force Impulse Elastometry of human organs. Eur J Radiol 80:e226–e230

    Article  PubMed  CAS  Google Scholar 

  29. Clevert DA, Stock K, Klein B et al (2009) Evaluation of Acoustic Radiation Force Impulse (ARFI) imaging and contrast-enhanced ultrasound in renal tumors of unknown etiology in comparison to histological findings. Clin Hemorheol Microcirc 43:95–107

    PubMed  Google Scholar 

  30. Syversveen T, Brabrand K, Midtvedt K et al (2011) Assessment of renal allograft fibrosis by acoustic radiation force impulse quantification—a pilot study. Transpl Int 24:100–105

    Article  PubMed  Google Scholar 

  31. Syversveen T, Midtvedt K, Berstad AE et al (2012) Tissue elasticity estimated by acoustic radiation force impulse quantification depends on the applied transducer force: an experimental study in kidney transplant patients. Eur Radiol 22:2130–2137

    Article  PubMed  Google Scholar 

  32. Stock KF, Klein BS, Cong MT et al (2011) ARFI-based tissue elasticity quantification and kidney graft dysfunction: first clinical experiences. Clin Hemorheol Microcirc 49:527–535

    PubMed  CAS  Google Scholar 

  33. Stock KF, Klein BS, Vo Cong MT et al (2010) ARFI-based tissue elasticity quantification in comparison to histology for the diagnosis of renal transplant fibrosis. Clin Hemorheol Microcirc 46:139–148

    PubMed  CAS  Google Scholar 

  34. Ries M, Jones RA, Basseau F et al (2001) Diffusion tensor MRI of the human kidney. J Magn Reson Imaging 14:42–49

    Article  PubMed  CAS  Google Scholar 

  35. Grenier N, Poulain S, Lepreux S et al (2012) Quantitative elastography of renal transplants using supersonic shear imaging: a pilot study. Eur Radiol 22:2138–2146

    Article  PubMed  Google Scholar 

  36. Gennisson JL, Grenier N, Combe C, Tanter M (2012) Supersonic Shear Wave Elastography of in vivo pig kidney: Influence of blood pressure, urinary pressure and tissue anisotropy. Ultrasound Med Biol 38:1559–1567

    Article  PubMed  Google Scholar 

  37. Brenner BM, Meyer TW, Hostetter TH (1982) Dietary protein intake and the progressive nature of kidney disease: the role of hemodynamically mediated glomerular injury in the pathogenesis of progressive glomerular sclerosis in aging, renal ablation, and intrinsic renal disease. N Engl J Med 307:652–659

    Article  PubMed  CAS  Google Scholar 

  38. Hostetter TH, Rennke HG, Brenner BM (1982) Compensatory renal hemodynamic injury: a final common pathway of residual nephron destruction. Am J Kidney Dis 1:310–314

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Costanza Bruno.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bruno, C., Caliari, G., Zaffanello, M. et al. Acoustic radiation force impulse (ARFI) in the evaluation of the renal parenchymal stiffness in paediatric patients with vesicoureteral reflux: preliminary results. Eur Radiol 23, 3477–3484 (2013). https://doi.org/10.1007/s00330-013-2959-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-013-2959-y

Keywords

Navigation