European Radiology

, Volume 23, Issue 12, pp 3354–3360 | Cite as

Diffusion-weighted MR imaging in primary rectal cancer staging demonstrates but does not characterise lymph nodes

  • Luc A. Heijnen
  • Doenja M. J. Lambregts
  • Dipanjali Mondal
  • Milou H. Martens
  • Robert G. Riedl
  • Geerard L. Beets
  • Regina G. H. Beets-TanEmail author
Magnetic Resonance



To evaluate the performance of diffusion-weighted MRI (DWI) for the detection of lymph nodes and for differentiating between benign and metastatic nodes during primary rectal cancer staging.


Twenty-one patients underwent 1.5-T MRI followed by surgery (± preoperative 5 × 5 Gy). Imaging consisted of T2-weighted MRI, DWI (b0, 500, 1000), and 3DT1-weighted MRI with 1-mm isotropic voxels. The latter was used for accurate detection and per lesion histological validation of nodes. Two independent readers analysed the signal intensity on DWI and measured the mean apparent diffusion coefficient (ADC) for each node (ADCnode) and the ADC of each node relative to the mean tumour ADC (ADCrel).


DWI detected 6 % more nodes than T2W-MRI. The signal on DWI was not accurate for the differentiation of metastatic nodes (AUC 0.45–0.50). Interobserver reproducibility for the nodal ADC measurements was excellent (ICC 0.93). Mean ADCnode was higher for benign than for malignant nodes (1.15 ± 0.24 vs. 1.04 ± 0.22 *10-3 mm2/s), though not statistically significant (P = 0.10). Area under the ROC curve/sensitivity/specificity for the assessment of metastatic nodes were 0.64/67 %/60 % for ADCnode and 0.67/75 %/61 % for ADCrel.


DWI can facilitate lymph node detection, but alone it is not reliable for differentiating between benign and malignant lymph nodes.

Key Points

Diffusion-weighted (DW) magnetic resonance imaging (MRI) offers new information in rectal cancer.

DW MRI demonstrates more lymph nodes than standard T2-weighted MRI.

Visual DWI assessment does not discriminate between benign and metastatic nodes.

Apparent diffusion coefficients do not discriminate between benign and metastatic nodes.


Rectal neoplasms Lymph nodes Diffusion-weighted imaging Apparent diffusion coefficient Magnetic resonance imaging 


  1. 1.
    Lahaye M, Engelen S, Nelemans P et al (2005) Imaging for predicting the risk factors – the circumferential resection margin and nodal disease—of local recurrence in rectal cancer: a meta-analysis. Semin Ultrasound CT MR 26:259–268PubMedCrossRefGoogle Scholar
  2. 2.
    Beets-Tan R, Beets G, Vliegen R et al (2001) Accuracy of magnetic resonance imaging in prediction of tumour-free resection margin in rectal cancer surgery. Lancet 357:497–504PubMedCrossRefGoogle Scholar
  3. 3.
    MERCURY Study Group (2006) Diagnostic accuracy of preoperative magnetic resonance imaging in predicting curative resection of rectal cancer: prospective observational study. BMJ 333:779CrossRefGoogle Scholar
  4. 4.
    Dworák O (1989) Number and size of lymph nodes and node metastases in rectal carcinomas. Surg Endosc 3:96–99PubMedCrossRefGoogle Scholar
  5. 5.
    Lahaye M, Beets G, Engelen S et al (2009) Locally advanced rectal cancer: MR imaging for restaging after neoadjuvant radiation therapy with concomitant chemotherapy. Part II. What are the criteria to predict involved lymph nodes? Radiology 252:81–91PubMedCrossRefGoogle Scholar
  6. 6.
    Suppiah A, Hunter I, Cowley J et al (2009) Magnetic resonance imaging accuracy in assessing tumour down-staging following chemoradiation in rectal cancer. Colorect Dis 11:249–253CrossRefGoogle Scholar
  7. 7.
    Bipat S, Glas AS, Slors FJ, Zwinderman AH, Bossuyt PM, Stoker J (2004) Rectal cancer: local staging and assessment of lymph node involvement with endoluminal US, CT, and MR imaging–a meta-analysis. Radiology 232:773–783PubMedCrossRefGoogle Scholar
  8. 8.
    Figueiras R, Goh V, Padhani A, Naveira A, Caamaño A, Martin C (2010) The role of functional imaging in colorectal cancer. AJR Am J Roentgenol 195:54–66PubMedCrossRefGoogle Scholar
  9. 9.
    Kwee T, Takahara T, Ochiai R, Nievelstein R, Luijten P (2008) Diffusion-weighted whole-body imaging with background body signal suppression (DWIBS): features and potential applications in oncology. Eur Radiol 18:1937–1952PubMedCrossRefGoogle Scholar
  10. 10.
    Nakai G, Matsuki M, Inada Y et al (2008) Detection and evaluation of pelvic lymph nodes in patients with gynecologic malignancies using body diffusion-weighted magnetic resonance imaging. J Comput Assist Tomogr 32:764–768PubMedCrossRefGoogle Scholar
  11. 11.
    Lambregts D, Maas M, Riedl R et al (2011) Value of ADC measurements for nodal staging after chemoradiation in locally advanced rectal cancer - a per lesion validation study. Eur Radiol 21:265–273PubMedCrossRefGoogle Scholar
  12. 12.
    Vandecaveye V, De Keyzer F, Vander Poorten V et al (2009) Head and neck squamous cell carcinoma: value of diffusion-weighted MR imaging for nodal staging. Radiology 251:134–146PubMedCrossRefGoogle Scholar
  13. 13.
    Lin G, Ho K-C, Wang J-J et al (2008) Detection of lymph node metastasis in cervical and uterine cancers by diffusion-weighted magnetic resonance imaging at 3T. J Magn Reson Imaging 28:128–135PubMedCrossRefGoogle Scholar
  14. 14.
    Yasui O, Sato M, Kamada A (2009) Diffusion-weighted imaging in the detection of lymph node metastasis in colorectal cancer. Tohoku J Exp Med 218:177–183PubMedCrossRefGoogle Scholar
  15. 15.
    Mizukami Y, Ueda S, Mizumoto A et al (2011) Diffusion-weighted magnetic resonance imaging for detecting lymph node metastasis of rectal cancer. World J Surg 35:895–899PubMedCrossRefGoogle Scholar
  16. 16.
    Marijnen C, Nagtegaal I, Klein Kranenbarg E et al (2001) No downstaging after short-term preoperative radiotherapy in rectal cancer patients. J Clin Oncol 19:1976–1984PubMedGoogle Scholar
  17. 17.
    Quirke P, Durdey P, Dixon M, Williams N (1986) Local recurrence of rectal adenocarcinoma due to inadequate surgical resection. Lancet 2:996–999PubMedCrossRefGoogle Scholar
  18. 18.
    DeLong ER, DeLong DM, Clarke-Pearson DL (1988) Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics 44:837–845PubMedCrossRefGoogle Scholar
  19. 19.
    Mir N, Sohaib S, Collins D, Koh D (2010) Fusion of high b-value diffusion-weighted and T2-weighted MR images improves identification of lymph nodes in the pelvis. J Med Imaging Radiat Oncol 54:358–364PubMedCrossRefGoogle Scholar
  20. 20.
    Sumi M, Sakihama N, Sumi T et al (2003) Discrimination of metastatic cervical lymph nodes with diffusion-weighted MR imaging in patients with head and neck cancer. AJNR Am J Neuroradiol 24:1627–1634PubMedGoogle Scholar
  21. 21.
    Abdel Razek A, Soliman N, Elkhamary S, Alsharaway M, Tawfik A (2006) Role of diffusion-weighted MR imaging in cervical lymphadenopathy. Eur Radiol 16:1468–1477PubMedCrossRefGoogle Scholar
  22. 22.
    de Bondt R, Hoeberigs M, Nelemans P et al (2009) Diagnostic accuracy and additional value of diffusion-weighted imaging for discrimination of malignant cervical lymph nodes in head and neck squamous cell carcinoma. Neuroradiology 51:183–192PubMedCrossRefGoogle Scholar
  23. 23.
    Holzapfel K, Duetsch S, Fauser C, Eiber M, Rummeny E, Gaa J (2009) Value of diffusion-weighted MR imaging in the differentiation between benign and malignant cervical lymph nodes. Eur J Radiol 72:381–387PubMedCrossRefGoogle Scholar
  24. 24.
    Kim J, Kim K, Park B-W, Kim N, Cho K-S (2008) Feasibility of diffusion-weighted imaging in the differentiation of metastatic from nonmetastatic lymph nodes: early experience. J Magn Reson Imaging 28:714–719PubMedCrossRefGoogle Scholar
  25. 25.
    Chen Y, Liao J, Xie R, Chen G, Chen G (2011) Discrimination of metastatic from hyperplastic pelvic lymph nodes in patients with cervical cancer by diffusion-weighted magnetic resonance imaging. Abdom Imaging 36:102–109PubMedCrossRefGoogle Scholar
  26. 26.
    Lahaye M, Engelen S, Kessels A et al (2008) USPIO-enhanced MR imaging for nodal staging in patients with primary rectal cancer: predictive criteria. Radiology 246:804–811PubMedCrossRefGoogle Scholar
  27. 27.
    Lambregts D, Beets G, Maas M et al (2011) Accuracy of gadofosveset-enhanced MRI for nodal staging and restaging in rectal cancer. Ann Surg 253:539–545PubMedCrossRefGoogle Scholar
  28. 28.
    Thoeny H, Triantafyllou M, Birkhaeuser F et al (2009) Combined ultrasmall superparamagnetic particles of iron oxide-enhanced and diffusion-weighted magnetic resonance imaging reliably detect pelvic lymph node metastases in normal-sized nodes of bladder and prostate cancer patients. Eur Urol 55:761–769PubMedCrossRefGoogle Scholar
  29. 29.
    Yamashita T, Takahara T, Kwee TC et al (2011) Diffusion magnetic resonance imaging with gadofosveset trisodium as a negative contrast agent for lymph node metastases assessment. Jpn J Radiol 29:25–32PubMedCrossRefGoogle Scholar

Copyright information

© European Society of Radiology 2013

Authors and Affiliations

  • Luc A. Heijnen
    • 1
    • 2
    • 3
  • Doenja M. J. Lambregts
    • 1
  • Dipanjali Mondal
    • 4
  • Milou H. Martens
    • 1
    • 2
    • 3
  • Robert G. Riedl
    • 5
  • Geerard L. Beets
    • 2
    • 3
  • Regina G. H. Beets-Tan
    • 1
    • 3
    Email author
  1. 1.Department of RadiologyMaastricht University Medical CentreMaastrichtThe Netherlands
  2. 2.Department of SurgeryMaastricht University Medical CentreMaastrichtThe Netherlands
  3. 3.GROW School for Oncology and Developmental BiologyMaastrichtThe Netherlands
  4. 4.Department of RadiologyJohn Radcliffe HospitalOxfordUK
  5. 5.Department of PathologyMaastricht University Medical CentreMaastrichtThe Netherlands

Personalised recommendations