European Radiology

, Volume 23, Issue 11, pp 3071–3076 | Cite as

Percutaneous lung biopsies: performance of an optical CT-based navigation system with a low-dose protocol

  • Rosario Francesco Grasso
  • Roberto Luigi CazzatoEmail author
  • Giacomo Luppi
  • Francesco D’Agostino
  • Emiliano Schena
  • Riccardo Del Vescovo
  • Francesco Giurazza
  • Eliodoro Faiella
  • Bruno Beomonte Zobel



To compare patients’ radiation exposure, technical feasibility, imaging quality and complication rate of percutaneous lung biopsies (PLBs) performed with a low-dose (LD) CT protocol under guidance of an optical navigation system.


Fifty-two consecutive patients with suspected malignant lung lesions were enrolled and randomised into group 1 (PLBs under the guidance of the navigation system) and group 2 (PLBs under the guidance navigation system with an LD protocol). Patients’ demographics, lesion features, procedure-related variables and CT image quality for group 2 were recorded and compared.


Technical success was 100 % in both groups. The radiation dose to patients’ chest was significantly lower in group 2 than in group 1 (group 1: mean TDLP 206 ± 59 mGy·cm, ~ 3.5 ± 1.0 mSv; group 2: 54.2 ± 46.2 mGy·cm, ~ 0.92 ± 0.78 mSv; P < 0.0001). The PNX rate was 12 % in group 1 and 11.1 % in group 2. The haemoptysis rate was 8.0 % in group 1 and 3.7 % in group 2. CT image quality obtained in group 2 was always rated as adequate and as excellent in 15 cases (56.0 %).


An optical navigation system with LD CT protocol is useful for performing lung biopsies with decreased patient radiation exposure.

Key Points

• Navigation systems are useful tools in percutaneous imaging-guided procedures.

• For lung biopsies, low-dose (LD) CT protocols may be used.

• Combining LD protocols with optical CT navigation results in significantly reduced radiation exposure.


Pulmonary nodules Percutaneous lung biopsy Computed tomography (CT) Radiation dose Navigation system 



Percutaneous lung biopsies


Low dose


  1. 1.
    Wood BJ, Zhang H, Durrani A et al (2005) Navigation with electromagnetic tracking for interventional radiology procedures: a feasibility study. J Vasc Interv Radiol 16:493–505PubMedCrossRefGoogle Scholar
  2. 2.
    Meier-Meitinger M, Nagel M, Kalender W, Bautz WA, Baum U (2008) Computer-assisted navigation system for interventional CT-guided procedures: results of phantom and clinical studies. Rofo 180:310–317PubMedCrossRefGoogle Scholar
  3. 3.
    Aghayev E, Ebert LC, Christe A et al (2008) CT data-based navigation for post-mortem biopsy-a feasibility study. J Forensic Leg Med 15:382–387PubMedCrossRefGoogle Scholar
  4. 4.
    Khan MF, Dogan S (2006) Navigation-based needle puncture of a cadaver using a hybrid tracking navigational system. Invest Radiol 41:713–720PubMedCrossRefGoogle Scholar
  5. 5.
    Wallace MJ, Gupta S, Hicks ME (2009) Out-of-plane computed tomography- guided biopsy using a magnetic-field-based navigation system. Cardiovasc Intervent Radiol 29:108–113CrossRefGoogle Scholar
  6. 6.
    Santos RS, Gupta A, Ebright MI et al (2010) Electromagnetic navigation to aid radiofrequency ablation and biopsy of lung tumors. Ann Thorac Surg 89:265–268PubMedCrossRefGoogle Scholar
  7. 7.
    Grand DJ, Atalay MA, Cronan JJ, Mayo-Smith WW, Dupuy DE (2011) CT-guided percutaneous lung biopsy: comparison of conventional CT fluoroscopy to CT fluoroscopy with electromagnetic navigation system in 60 consecutive patients. Eur J Radiol 79:e133–e136PubMedCrossRefGoogle Scholar
  8. 8.
    Grasso RF, Faiella E, Luppi G et al (2013) Percutaneous lung biopsy: comparison between an augmented reality CT navigation system and standard CT-guided technique. Int J Comput Assist Radiol Surg. doi: 10.1007/s11548-013-0816-8 PubMedGoogle Scholar
  9. 9.
    Office for Official Publications of the European Communities (1999) European guidelines on quality criteria for computed tomography, LuxembourgGoogle Scholar
  10. 10.
    De González AB, Mahesh M, Kim KP et al (2009) Projected cancer risks from computed tomographic scans performed in the United States in 2007. Arch Intern Med 169:2071–2077CrossRefGoogle Scholar
  11. 11.
    Sarti M, Brehmer WP, Gay SB (2012) Low-dose techniques in CT-guided interventions. Radiographics 32:1109–1119PubMedCrossRefGoogle Scholar
  12. 12.
    De González AB, Darby S (2004) Risk of cancer from diagnostic X-rays: estimates for the UK and 14 other countries. Lancet 363:345–351CrossRefGoogle Scholar
  13. 13.
    Kubo T, Lin PJ, Stiller W et al (2008) Radiation dose reduction in chest CT: a review. Am J Roentgenol 190:335–343CrossRefGoogle Scholar
  14. 14.
    Lucey BC, Varghese JC, Hochberg A, Blake AM, Soto JA (2007) CT-guided intervention with low radiation dose: feasibility and experience. Am J Roentgenol 188:1187–1194CrossRefGoogle Scholar
  15. 15.
    Bruners P, Penzkofer T, Nagel M et al (2009) Electromagnetic tracking for CT-guided spine interventions: phantom, ex-vivo and in-vivo results. Eur Radiol 19:990–994PubMedCrossRefGoogle Scholar
  16. 16.
    Lal H, Neyaz Z, Nath A, Borah S (2012) CT-guided percutaneous biopsy of intrathoracic lesions. Korean J Radiol 13:210–226PubMedCrossRefGoogle Scholar
  17. 17.
    Choo JY, Park CM, Lee NK, Lee SM, Lee HJ, Goo GM (2013) Percutaneous transthoracic needle biopsy of small (≤1 cm) lung nodules under C-arm cone-beam CT virtual navigation guidance. Eur Radiol 23:712–719PubMedCrossRefGoogle Scholar
  18. 18.
    Braak SJ, Herder GJ, van Heesewijk JPM, van Strijen MJL (2012) Pulmonary masses: initial results of cone-beam CT guidance with needle planning software for percutaneous lung biopsy. Cardiovasc Intervent Radiol 35:1414–1421PubMedCrossRefGoogle Scholar
  19. 19.
    Itoh S, Ikeda M, Arahata S et al (2000) Lung cancer screening: minimum tube current required for helical CT. Radiology 215:175–183PubMedGoogle Scholar
  20. 20.
    Hetmaniak Y, Bard JJ, Albuisson E et al (2003) Pulmonary nodules: dosimetric and clinical studies at low dose multidetector CT. J Radiol 84:399–404PubMedGoogle Scholar
  21. 21.
    Zhu X, Yu J, Huang Z (2004) Low-dose chest CT: optimizing radiation protection for patients. AJR Am J Roentgenol 183:809–816PubMedCrossRefGoogle Scholar

Copyright information

© European Society of Radiology 2013

Authors and Affiliations

  • Rosario Francesco Grasso
    • 1
  • Roberto Luigi Cazzato
    • 1
    Email author
  • Giacomo Luppi
    • 1
  • Francesco D’Agostino
    • 1
  • Emiliano Schena
    • 2
  • Riccardo Del Vescovo
    • 1
  • Francesco Giurazza
    • 1
  • Eliodoro Faiella
    • 1
  • Bruno Beomonte Zobel
    • 1
  1. 1.Department of RadiologyUniversity Campus Bio-Medico of RomeRomeItaly
  2. 2.Unit of Measurements and Biomedical Instrumentations Biomedical Engineering LaboratoryUniversity Campus Bio-Medico of RomeRomeItaly

Personalised recommendations