Skip to main content
Log in

Computed diffusion-weighted imaging of the prostate at 3 T: impact on image quality and tumour detection

  • Urogenital
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objectives

To investigate the impact of prostate computed diffusion-weighted imaging (DWI) on image quality and tumour detection.

Methods

Forty-nine patients underwent 3-T magnetic resonance imaging using a pelvic phased-array coil before prostatectomy, including DWI with b values of 50 and 1,000 s/mm2. Computed DW images with b value 1,500 s/mm2 were generated from the lower b-value images. Directly acquired b-1,500 DW images were obtained in 39 patients. Two radiologists independently assessed DWI for image quality measures and location of the dominant lesion. A third radiologist measured tumour-to-peripheral-zone (PZ) contrast. Pathological findings from prostatectomy served as the reference standard.

Results

Direct and computed b-1,500 DWI showed better suppression of benign prostate tissue than direct b-1,000 DWI for both readers (P ≤ 0.024). However, computed b-1,500 DWI showed less distortion and ghosting than direct b-1,000 and direct b-1,500 DWI for both readers (P ≤ 0.067). Direct and computed b-1,500 images showed better sensitivity and positive predictive value (PPV) for tumour detection than direct b-1,000 images for both readers (P ≤ 0.062), with no difference in sensitivity or PPV between direct and computed b-1,500 images (P ≥ 0.180). Tumour-to-PZ contrast was greater on computed b-1,500 than on either direct DWI set (P < 0.001).

Conclusion

Computed DWI of the prostate using b value ≥1,000 s/mm2 improves image quality and tumour detection compared with acquired standard b-value images.

Key Points

Diffusion weighted MRI is increasingly used for diagnosing and assessing prostate carcinoma.

Prostate computed DWI can extrapolate high b-value images from lower b values.

Computed DWI provides greater suppression of benign tissue than lower b-value images.

Computed DWI provides less distortion and artefacts than images using same b value.

Computed DWI provides better diagnostic performance than lower b-value images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Barentsz JO, Richenberg J, Clements R et al (2012) ESUR prostate MR guidelines 2012. Eur Radiol 22:746–757

    Article  PubMed  Google Scholar 

  2. Hoeks CM, Barentsz JO, Hambrock T et al (2011) Prostate cancer: multiparametric MR imaging for detection, localization, and staging. Radiology 261:46–66

    Article  PubMed  Google Scholar 

  3. Lim HK, Kim JK, Kim KA, Cho KS (2009) Prostate cancer: apparent diffusion coefficient map with T2-weighted images for detection—a multireader study. Radiology 250:145–151

    Article  PubMed  Google Scholar 

  4. Haider MA, van der Kwast TH, Tanguay J et al (2007) Combined T2-weighted and diffusion-weighted MRI for localization of prostate cancer. AJR Am J Roentgenol 189:323–328

    Article  PubMed  Google Scholar 

  5. Selnaes KM, Heerschap A, Jensen LR et al (2012) Peripheral zone prostate cancer localization by multiparametric magnetic resonance at 3 T: unbiased cancer identification by matching to histopathology. Invest Radiol 47:624–633

    Article  PubMed  Google Scholar 

  6. Hambrock T, Hoeks C, Hulsbergen-van de Kaa C et al (2012) Prospective assessment of prostate cancer aggressiveness using 3-T diffusion-weighted magnetic resonance imaging-guided biopsies versus a systematic 10-core transrectal ultrasound prostate biopsy cohort. Eur Urol 61:177–184

    Article  PubMed  Google Scholar 

  7. Somford DM, Hoeks CM, Hulsbergen-van de Kaa CA et al (2013) Evaluation of diffusion-weighted MR imaging at inclusion in an active surveillance protocol for low-risk prostate cancer. Invest Radiol 48:152–157

    Article  PubMed  Google Scholar 

  8. Somford DM, Hambrock T, Hulsbergen-van de Kaa CA et al (2012) Initial experience with identifying high-grade prostate cancer using diffusion-weighted MR imaging (DWI) in patients with a Gleason score ≤ 3 + 3 = 6 upon schematic TRUS-guided biopsy: a radical prostatectomy correlated series. Invest Radiol 47:153–158

    PubMed  Google Scholar 

  9. Kim CK, Park BK, Kim B (2010) Diffusion-weighted MRI at 3 T for the evaluation of prostate cancer. AJR Am J Roentgenol 194:1461–1469

    Article  PubMed  Google Scholar 

  10. Vilanova JC, Barcelo-Vidal C, Comet J et al (2011) Usefulness of prebiopsy multifunctional and morphologic MRI combined with free-to-total prostate-specific antigen ratio in the detection of prostate cancer. AJR Am J Roentgenol 196:W715–W722

    Article  PubMed  Google Scholar 

  11. Tanimoto A, Nakashima J, Kohno H, Shinmoto H, Kuribayashi S (2007) Prostate cancer screening: the clinical value of diffusion-weighted imaging and dynamic MR imaging in combination with T2-weighted imaging. J Magn Reson Imaging 25:146–152

    Article  PubMed  Google Scholar 

  12. Vargas HA, Akin O, Shukla-Dave A et al (2012) Performance characteristics of MR imaging in the evaluation of clinically low-risk prostate cancer: a prospective study. Radiology 265:478–487

    Article  PubMed  Google Scholar 

  13. Kobus T, Vos PC, Hambrock T et al (2012) Prostate cancer aggressiveness: in vivo assessment of MR spectroscopy and diffusion-weighted imaging at 3 T. Radiology 265:457–467

    Article  PubMed  Google Scholar 

  14. Kitajima K, Kaji Y, Kuroda K, Sugimura K (2008) High b-value diffusion-weighted imaging in normal and malignant peripheral zone tissue of the prostate: effect of signal-to-noise ratio. Magn Reson Med Sci 7:93–99

    Article  PubMed  Google Scholar 

  15. Kim CK, Park BK, Kim B (2010) High-b-value diffusion-weighted imaging at 3 T to detect prostate cancer: comparisons between b values of 1,000 and 2,000 s/mm2. AJR Am J Roentgenol 194:W33–W37

    Article  PubMed  Google Scholar 

  16. Metens T, Miranda D, Absil J, Matos C (2012) What is the optimal b value in diffusion-weighted MR imaging to depict prostate cancer at 3T? Eur Radiol 22:703–709

    Article  PubMed  CAS  Google Scholar 

  17. Katahira K, Takahara T, Kwee TC et al (2011) Ultra-high-b-value diffusion-weighted MR imaging for the detection of prostate cancer: evaluation in 201 cases with histopathological correlation. Eur Radiol 21:188–196

    Article  PubMed  Google Scholar 

  18. Ohgiya Y, Suyama J, Seino N et al (2012) Diagnostic accuracy of ultra-high-b-value 3.0-T diffusion-weighted MR imaging for detection of prostate cancer. Clin Imaging 36:526–531

    Article  PubMed  Google Scholar 

  19. Kitajima K, Takahashi S, Ueno Y et al (2012) Clinical utility of apparent diffusion coefficient values obtained using high b-value when diagnosing prostate cancer using 3 tesla MRI: comparison between ultra-high b-value (2000 s/mm2) and standard high b-value (1000 s/mm2). J Magn Reson Imaging 36:198–205

    Article  PubMed  Google Scholar 

  20. Ben-Amitay S, Jones DK, Assaf Y (2012) Motion correction and registration of high b-value diffusion weighted images. Magn Reson Med 67:1694–1702

    Article  PubMed  Google Scholar 

  21. Blackledge MD, Leach MO, Collins DJ, Koh DM (2011) Computed diffusion-weighted MR imaging may improve tumor detection. Radiology 261:573–581

    Article  PubMed  Google Scholar 

  22. Ahmed HU (2009) The index lesion and the origin of prostate cancer. N Engl J Med 361:1704–1706

    Article  PubMed  CAS  Google Scholar 

  23. Bott SR, Ahmed HU, Hindley RG, Abdul-Rahman A, Freeman A, Emberton M (2010) The index lesion and focal therapy: an analysis of the pathological characteristics of prostate cancer. BJU Int 106:1607–1611

    Article  PubMed  Google Scholar 

  24. Karavitakis M, Winkler M, Abel P, Livni N, Beckley I, Ahmed HU (2011) Histological characteristics of the index lesion in whole-mount radical prostatectomy specimens: implications for focal therapy. Prostate Cancer Prostatic Dis 14:46–52

    Article  PubMed  CAS  Google Scholar 

  25. Cornfeld DM, Israel G, McCarthy SM, Weinreb JC (2008) Pelvic imaging using a T1W fat-suppressed three-dimensional dual echo Dixon technique at 3T. J Magn Reson Imaging 28:121–127

    Article  PubMed  Google Scholar 

  26. Hori M, Kim T, Onishi H et al (2011) Uterine tumors: comparison of 3D versus 2D T2-weighted turbo spin-echo MR imaging at 3.0 T—initial experience. Radiology 258:154–163

    Article  PubMed  Google Scholar 

  27. Langer DL, van der Kwast TH, Evans AJ et al (2008) Intermixed normal tissue within prostate cancer: effect on MR imaging measurements of apparent diffusion coefficient and T2—sparse versus dense cancers. Radiology 249:900–908

    Article  PubMed  Google Scholar 

  28. Rosenkrantz AB, Kong X, Niver BE et al (2011) Prostate cancer: comparison of tumor visibility on trace diffusion-weighted images and the apparent diffusion coefficient map. AJR Am J Roentgenol 196:123–129

    Article  PubMed  Google Scholar 

  29. Liu W, Laitinen S, Khan S et al (2009) Copy number analysis indicates monoclonal origin of lethal metastatic prostate cancer. Nat Med 15:559–565

    Article  PubMed  CAS  Google Scholar 

  30. Wise AM, Stamey TA, McNeal JE, Clayton JL (2002) Morphologic and clinical significance of multifocal prostate cancers in radical prostatectomy specimens. Urology 60:264–269

    Article  PubMed  Google Scholar 

  31. Rosenkrantz AB, Sigmund EE, Johnson G et al (2012) Prostate cancer: feasibility and preliminary experience of a diffusional kurtosis model for detection and assessment of aggressiveness of peripheral zone cancer. Radiology 264:126–135

    Article  PubMed  Google Scholar 

  32. Quentin M, Blondin D, Klasen J et al (2012) Comparison of different mathematical models of diffusion-weighted prostate MR imaging. Magn Reson Imaging 30:1468–1474

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the Joseph and Diane Steinberg Charitable Trust for support.

C. Geppert is an employee of Siemens (Erlangen, Germany). However, C.G. did not provide any funding for this study, and the remaining authors had control of all study data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew B. Rosenkrantz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosenkrantz, A.B., Chandarana, H., Hindman, N. et al. Computed diffusion-weighted imaging of the prostate at 3 T: impact on image quality and tumour detection. Eur Radiol 23, 3170–3177 (2013). https://doi.org/10.1007/s00330-013-2917-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-013-2917-8

Keywords

Navigation