Advertisement

European Radiology

, Volume 23, Issue 7, pp 1855–1861 | Cite as

Body size indices to determine iodine mass with contrast-enhanced multi-detector computed tomography of the upper abdomen: does body surface area outperform total body weight or lean body weight?

  • Hiroshi KondoEmail author
  • Masayuki Kanematsu
  • Satoshi Goshima
  • Haruo Watanabe
  • Hiroshi Kawada
  • Noriyuki Moriyama
  • Kyongtae T. Bae
Computed Tomography

Abstract

Objective

To compare total body weight (TBW), lean body weight (LBW) and body surface area (BSA) for the adjustment of the iodine dose required for contrast-enhanced multi-detector computed tomography (MDCT) of the aorta and the liver.

Methods

One hundred and three patients undergoing MDCT of the abdomen were randomised into three groups: the TBW group receiving 0.6 g iodine/kg of TBW (n = 33), the LBW group receiving 0.75 g iodine/kg of LBW (n = 35) and the BSA group receiving 22 g iodine/m2 (n = 35). ∆HU (increases in CT value) per gram of iodine (∆HU/g) and adjusted maximum hepatic enhancement (adjusted MHE; ∆HU/[g iodine/kg]) correlated with three groups using linear regressions.

Results

Correlation coefficients of ∆HU/g were 0.67 (TBW), 0.86 (LBW) and 0.85 (BSA) for the aorta, and 0.74 (TBW), 0.77 (LBW) and 0.84 (BSA) for the liver. Adjusted MHE was constant at 70.2 with LBW and at 2.69 with BSA, but correlated positively with TBW (r = 0.58, P < 0.001).

Conclusion

Iodine load may need to be tailored by LBW or BSA in contrast enhanced MDCT of the abdomen. BSA is a simple and feasible index for the determination of iodine dose in individual patients.

Key Points

Optimisation of enhancement is very important for high quality MDCT.

Iodine dose is best adjusted according to LBW or BSA.

BSA may be adopted because calculation is simple.

Iodine dose of 0.712 g/kg LBW/18.6 g/m 2 BSA gives 50 HU hepatic enhancement.

Keywords

Contrast material Liver Computed tomography Lean body weight Body surface area 

References

  1. 1.
    Haider MA, Amitai MM, Rappaport DC et al (2002) Multi-detector row helical CT in preoperative assessment of small (< or = 1.5 cm) liver metastases: is thinner collimation better? Radiology 225:137–142PubMedCrossRefGoogle Scholar
  2. 2.
    Onishi H, Murakami T, Kim T et al (2006) Hepatic metastases: detection with multi-detector row CT, SPIO-enhanced MR imaging, and both techniques combined. Radiology 239:131–138PubMedCrossRefGoogle Scholar
  3. 3.
    Yamashita Y, Komohara Y, Takahashi M et al (2000) Abdominal helical CT: evaluation of optimal doses of intravenous contrast material–a prospective randomized study. Radiology 216:718–723PubMedGoogle Scholar
  4. 4.
    Awai K, Takada K, Onishi H, Hori S (2002) Aortic and hepatic enhancement and tumor-to-liver contrast: analysis of the effect of different concentrations of contrast material at multi-detector row helical CT. Radiology 224:757–763PubMedCrossRefGoogle Scholar
  5. 5.
    Behrendt FF, Pietsch H, Jost G et al (2010) Intra-individual comparison of different contrast media concentrations (300 mg, 370 mg and 400 mg iodine) in MDCT. Eur Radiol 20:1644–1650PubMedCrossRefGoogle Scholar
  6. 6.
    Foley WD, Hoffmann RG, Quiroz FA, Kahn CE Jr, Perret RS (1994) Hepatic helical CT: contrast material injection protocol. Radiology 192:367–371PubMedGoogle Scholar
  7. 7.
    Tublin ME, Tessler FN, Cheng SL, Peters TL, McGovern PC (1999) Effect of injection rate of contrast medium on pancreatic and hepatic helical CT. Radiology 210:97–101PubMedGoogle Scholar
  8. 8.
    Kanematsu M, Goshima S, Kondo H et al (2005) Optimizing scan delays of fixed duration contrast injection in contrast-enhanced biphasic multidetector-row CT for the liver and the detection of hypervascular hepatocellular carcinoma. J Comput Assist Tomogr 29:195–201PubMedCrossRefGoogle Scholar
  9. 9.
    Goshima S, Kanematsu M, Kondo H et al (2006) MDCT of the liver and hypervascular hepatocellular carcinomas: optimizing scan delays for bolus-tracking techniques of hepatic arterial and portal venous phases. AJR Am J Roentgenol 187:W25–W32PubMedCrossRefGoogle Scholar
  10. 10.
    Heiken JP, Brink JA, McClennan BL, Sagel SS, Crowe TM, Gaines MV (1995) Dynamic incremental CT: effect of volume and concentration of contrast material and patient weight on hepatic enhancement. Radiology 195:353–357PubMedGoogle Scholar
  11. 11.
    Desai GS, Uppot RN, Yu EW, Kambadakone AR, Sahani DV (2012) Impact of iterative reconstruction on image quality and radiation dose in multidetector CT of large body size adults. Eur Radiol 22:1631–1640PubMedCrossRefGoogle Scholar
  12. 12.
    Ho LM, Nelson RC, Delong DM (2007) Determining contrast medium dose and rate on basis of lean body weight: does this strategy improve patient-to-patient uniformity of hepatic enhancement during multi-detector row CT? Radiology 243:431–437PubMedCrossRefGoogle Scholar
  13. 13.
    Kondo H, Kanematsu M, Goshima S et al (2011) Aortic and hepatic enhancement at multidetector CT: evaluation of optimal iodine dose determined by lean body weight. Eur J Radiol 80:e273–e277PubMedCrossRefGoogle Scholar
  14. 14.
    Bae KT, Heiken JP, Brink JA (1998) Aortic and hepatic contrast medium enhancement at CT. Part II. Effect of reduced cardiac output in a porcine model. Radiology 207:657–662PubMedGoogle Scholar
  15. 15.
    Dean PB, Violante MR, Mahoney JA (1980) Hepatic CT contrast enhancement: effect of dose, duration of infusion, and time elapsed following infusion. Invest Radiol 15:158–161PubMedCrossRefGoogle Scholar
  16. 16.
    Kormano M, Partanen K, Soimakallio S, Kivimaki T (1983) Dynamic contrast enhancement of the upper abdomen: effect of contrast medium and body weight. Invest Radiol 18:364–367PubMedCrossRefGoogle Scholar
  17. 17.
    Berland LL, Lee JY (1988) Comparison of contrast media injection rates and volumes for hepatic dynamic incremented computed tomography. Invest Radiol 23:918–922PubMedCrossRefGoogle Scholar
  18. 18.
    Chambers TP, Baron RL, Lush RM (1994) Hepatic CT enhancement. Part I. Alterations in the volume of contrast material within the same patients. Radiology 193:513–517PubMedGoogle Scholar
  19. 19.
    Small WC, Nelson RC, Bernardino ME, Brummer LT (1994) Contrast-enhanced spiral CT of the liver: effect of different amounts and injection rates of contrast material on early contrast enhancement. AJR Am J Roentgenol 163:87–92PubMedCrossRefGoogle Scholar
  20. 20.
    Platt JF, Reige KA, Ellis JH (1999) Aortic enhancement during abdominal CT angiography: correlation with test injections, flow rates, and patient demographics. AJR Am J Roentgenol 172:53–56PubMedCrossRefGoogle Scholar
  21. 21.
    Bae KT (2003) Peak contrast enhancement in CT and MR angiography: when does it occur and why? Pharmacokinetic study in a porcine model. Radiology 227:809–816PubMedCrossRefGoogle Scholar
  22. 22.
    Bae KT, Heiken JP (2005) Scan and contrast administration principles of MDCT. Eur Radiol 15(Suppl 5):E46–E59PubMedGoogle Scholar
  23. 23.
    Kondo H, Kanematsu M, Goshima S et al (2008) Abdominal multidetector CT in patients with varying body fat percentages: estimation of optimal contrast material dose. Radiology 249:872–877PubMedCrossRefGoogle Scholar
  24. 24.
    Bae KT, Heiken JP, Brink JA (1998) Aortic and hepatic contrast medium enhancement at CT. Part I. Prediction with a computer model. Radiology 207:647–655PubMedGoogle Scholar
  25. 25.
    Kondo H, Kanematsu M, Goshima S et al (2010) Body size indexes for optimizing iodine dose for aortic and hepatic enhancement at multidetector CT: comparison of total body weight, lean body weight, and blood volume. Radiology 254:163–169PubMedCrossRefGoogle Scholar
  26. 26.
    Haycock GB, Schwartz GJ, Wisotsky DH (1978) Geometric method for measuring body surface area: a height-weight formula validated in infants, children, and adults. J Pediatr 93:62–66PubMedCrossRefGoogle Scholar
  27. 27.
    Bae KT, Seeck BA, Hildebolt CF et al (2008) Contrast enhancement in cardiovascular MDCT: effect of body weight, height, body surface area, body mass index, and obesity. AJR Am J Roentgenol 190:777–784PubMedCrossRefGoogle Scholar
  28. 28.
    Yanaga Y, Awai K, Nakaura T et al (2010) Contrast material injection protocol with the dose adjusted to the body surface area for MDCT aortography. AJR Am J Roentgenol 194:903–908PubMedCrossRefGoogle Scholar
  29. 29.
    Onishi H, Murakami T, Kim T et al (2010) Abdominal multi-detector row CT: Effectiveness of determining contrast medium dose on basis of body surface area. Eur J Radiol 80:643-647Google Scholar
  30. 30.
    Svensson A, Nouhad J, Cederlund K et al (2012) Hepatic contrast medium enhancement at computed tomography and its correlation with various body size measures. Acta Radiol 53:601–606PubMedCrossRefGoogle Scholar
  31. 31.
    Kalra MK, Maher MM, Toth TL et al (2004) Techniques and applications of automatic tube current modulation for CT. Radiology 233:649–657PubMedCrossRefGoogle Scholar
  32. 32.
    Kouno T, Katsumata N, Mukai H, Ando M, Watanabe T (2003) Standardization of the body surface area (BSA) formula to calculate the dose of anticancer agents in Japan. Jpn J Clin Oncol 33:309–313PubMedCrossRefGoogle Scholar
  33. 33.
    Fleiss JL (1986) The design and analysis of clinical experiments. Wiley, New York, pp 51–59Google Scholar
  34. 34.
    Gleeson TG, Bulugahapitiya S (2004) Contrast-induced nephropathy. AJR Am J Roentgenol 183:1673–1689PubMedCrossRefGoogle Scholar

Copyright information

© European Society of Radiology 2013

Authors and Affiliations

  • Hiroshi Kondo
    • 1
    Email author
  • Masayuki Kanematsu
    • 1
    • 2
  • Satoshi Goshima
    • 1
  • Haruo Watanabe
    • 1
  • Hiroshi Kawada
    • 1
  • Noriyuki Moriyama
    • 3
  • Kyongtae T. Bae
    • 4
  1. 1.Department of RadiologyGifu University HospitalGifuJapan
  2. 2.High-level Imaging Diagnosis CenterGifu University HospitalGifuJapan
  3. 3.Research Center for Cancer Prevention and ScreeningNational Cancer Center HospitalTsukijiJapan
  4. 4.Department of RadiologyUniversity of Pittsburgh Medical CenterPittsburghUSA

Personalised recommendations