Skip to main content
Log in

Immediate post-operative MRI suggestive of the site and timing of glioblastoma recurrence after gross total resection: a retrospective longitudinal preliminary study

  • Neuro
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objectives

To retrospectively identify morphological and physiological post-operative magnetic resonance imaging (MRI) characteristics predictive of glioblastoma recurrences after gross total resection (gross-TR).

Methods

Resection margins of 24 glioblastoma were analysed immediately post-operatively (MRI ≤ 2 h) and early post-operatively (24 h ≤ MRI ≤ 48 h), and subdivided into areas with and without subtle contrast enhancement previously considered non-specific. On follow-up MRI, tumour regrowth areas were subdivided according to recurrence extent (focally/extended) and delay (≤6 and ≥12 months). Co-registration of pre-operative, immediately post-operative and early post-operative MRI with the first follow-up MRI demonstrating recurrence authorised their morphological (contrast enhancements) and physiological (rCBV) characterisation.

Results

Morphologically, on immediately post-operative MRI, micro-nodular and frayed enhancements correlate significantly with early recurrences (≤6 months). After gross-TR the absence of these enhancements is associated with a significant increase in progression-free survival (61 vs 15 weeks respectively) and overall survival (125 vs 51 weeks respectively). Physiologically, areas with a future focal recurrence have a trend toward higher rCBV than other areas.

Conclusion

Immediately post-operative topography of micro-nodular and frayed enhancements is suggestive of recurrence location and delay. Absence of such enhancements is associated with a fourfold increase in progression-free survival and a 2.5-fold increase in overall survival.

Key Points

Immediately post-operative MRI reveals contrast enhancement after glioblastoma gross total resection.

Immediately post-operative micro-nodular and frayed enhancement correlate with early recurrence.

Absence of micro-nodular/frayed enhancement is associated with 61 weeks’ progression-free survival.

Absence of micro-nodular/frayed enhancement is associated with 125 weeks’ overall survival.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

Gd:

Gadolinium

(n)TG:

(no) tumour growth

Op:

Operative

OS:

Overall survival

PFS:

Progression-free survival

PPV:

Positive predictive value

PWI:

Perfusion-weighted imaging

rCBV:

Relative cerebral blood volume

ROI:

Region of interest

TR:

Total resection

References

  1. States Central Brain Tumor Registry of the United (2010) CBTRUS statistical report: Primary brain and central nervous system tumors diagnosed in the United States in 2004–2006. Central Brain Tumor Registry of the United States (CBTRUS), Chicago. Available via http://www.cbtrus.org/2010-NPCR-SEER/CBTRUS-WEBREPORT-Final-3-2-10.pdf. Accessed 05 May 2010

  2. Albert FK, Forsting M, Sartor K, Adams HP, Kunze S (1994) Early postoperative magnetic resonance imaging after resection of malignant glioma: objective evaluation of residual tumor and its influence on regrowth and prognosis. Neurosurgery 34:45–60, discussion 60-41

    Article  PubMed  CAS  Google Scholar 

  3. Allahdini F, Amirjamshidi A, Reza-Zarei M, Abdollahi M (2010) Evaluating the prognostic factors effective on the outcome of patients with glioblastoma multiformis: does maximal resection of the tumor lengthen the median survival? World Neurosurg 73:128–134, discussion e116

    Article  PubMed  Google Scholar 

  4. Sanai N, Polley MY, Mcdermott MW, Parsa AT, Berger MS (2011) An extent of resection threshold for newly diagnosed glioblastomas. J Neurosurg 115:3–8

    Article  PubMed  Google Scholar 

  5. Lacroix M, Abi-Said D, Fourney DR et al (2001) A multivariate analysis of 416 patients with glioblastoma multiforme: prognosis, extent of resection, and survival. J Neurosurg 95:190–198

    Article  PubMed  CAS  Google Scholar 

  6. Hentschel SJ, Sawaya R (2003) Optimizing outcomes with maximal surgical resection of malignant gliomas. Cancer Control 10:109–114

    PubMed  Google Scholar 

  7. Kuhnt D, Becker A, Ganslandt O, Bauer M, Buchfelder M, Nimsky C (2011) Correlation of the extent of tumor volume resection and patient survival in surgery of glioblastoma multiforme with high-field intraoperative MRI guidance. Neuro Oncol 13:1339–1348

    Article  PubMed  Google Scholar 

  8. Jeremic B, Grulicic D, Samardzic M et al (1997) The effect of extent of tumor resection on the outcome of combined therapy in patients with glioblastoma multiforme. Srp Arh Celok Lek 125:93–98

    PubMed  CAS  Google Scholar 

  9. Ushio Y, Kochi M, Hamada J, Kai Y, Nakamura H (2005) Effect of surgical removal on survival and quality of life in patients with supratentorial glioblastoma. Neurol Med Chir (Tokyo) 45:454–460, discussion 460-451

    Article  Google Scholar 

  10. Vidiri A, Carapella CM, Pace A et al (2006) Early post-operative MRI: correlation with progression-free survival and overall survival time in malignant gliomas. J Exp Clin Cancer Res 25:177–182

    PubMed  CAS  Google Scholar 

  11. Stewart LA (2002) Chemotherapy in adult high-grade glioma: a systematic review and meta-analysis of individual patient data from 12 randomised trials. Lancet 359:1011–1018

    Article  PubMed  CAS  Google Scholar 

  12. Li SW, Qiu XG, Chen BS et al (2009) Prognostic factors influencing clinical outcomes of glioblastoma multiforme. Chin Med J (Engl) 122:1245–1249

    Google Scholar 

  13. Mcgirt MJ, Chaichana KL, Gathinji M et al (2009) Independent association of extent of resection with survival in patients with malignant brain astrocytoma. J Neurosurg 110:156–162

    Article  PubMed  Google Scholar 

  14. Murakami R, Hirai T, Nakamura H et al (2010) Recurrence patterns of glioblastoma treated with postoperative radiation therapy: relationship between extent of resection and progression-free interval. Int J Radiat Oncol Biol Phys 78(3 Suppl 1):S289–S290

    Article  Google Scholar 

  15. Ewelt C, Goeppert M, Rapp M, Steiger HJ, Stummer W, Sabel M (2011) Glioblastoma multiforme of the elderly: the prognostic effect of resection on survival. J Neurooncol 103:611–618

    Article  PubMed  Google Scholar 

  16. Massey V, Wallner KE (1990) Patterns of second recurrence of malignant astrocytomas. Int J Radiat Oncol Biol Phys 18:395–398

    Article  PubMed  CAS  Google Scholar 

  17. Hess CF, Schaaf JC, Kortmann RD, Schabet M, Bamberg M (1994) Malignant glioma: patterns of failure following individually tailored limited volume irradiation. Radiother Oncol 30:146–149

    Article  PubMed  CAS  Google Scholar 

  18. Wick W, Stupp R, Beule AC et al (2008) A novel tool to analyze MRI recurrence patterns in glioblastoma. Neuro Oncol 10:1019–1024

    Article  PubMed  Google Scholar 

  19. Schaefer PW, Grant PE, Gonzalez RG (2000) Diffusion-weighted MR imaging of the brain. Radiology 217:331–345

    PubMed  CAS  Google Scholar 

  20. Di Costanzo A, Scarabino T, Trojsi F et al (2006) Multiparametric 3T MR approach to the assessment of cerebral gliomas: tumor extent and malignancy. Neuroradiology 48:622–631

    Article  PubMed  Google Scholar 

  21. Khan RB, Gutin PH, Rai SN, Zhang L, Krol G, Deangelis LM (2006) Use of diffusion weighted magnetic resonance imaging in predicting early postoperative outcome of new neurological deficits after brain tumor resection. Neurosurgery 59:60–66, discussion 60–66

    Article  PubMed  Google Scholar 

  22. Pirzkall A, Mcgue C, Saraswathy S et al (2009) Tumor regrowth between surgery and initiation of adjuvant therapy in patients with newly diagnosed glioblastoma. Neuro Oncol 11:842–852

    Article  PubMed  CAS  Google Scholar 

  23. Khayal IS, Polley MY, Jalbert L et al (2010) Evaluation of diffusion parameters as early biomarkers of disease progression in glioblastoma multiforme. Neuro Oncol 12:908–916

    Article  PubMed  CAS  Google Scholar 

  24. Blasel S, Franz K, Ackermann H, Weidauer S, Zanella F, Hattingen E (2011) Stripe-like increase of rCBV beyond the visible border of glioblastomas: site of tumor infiltration growing after neurosurgery. J Neurooncol 103:575–584

    Article  PubMed  Google Scholar 

  25. Li Y, Lupo JM, Polley MY et al (2011) Serial analysis of imaging parameters in patients with newly diagnosed glioblastoma multiforme. Neuro Oncol 13:546–557

    Article  PubMed  Google Scholar 

  26. Stecco A, Pisani C, Quarta R et al (2011) DTI and PWI analysis of peri-enhancing tumoral brain tissue in patients treated for glioblastoma. J Neurooncol 102:261–271

    Article  PubMed  Google Scholar 

  27. Leysalle A, Haberer S (2010) Mise au point sur la pseudoprogression après chimioradiothérapie dans les glioblastomes. Oncologie 12:559–564

    Article  CAS  Google Scholar 

  28. Jankovski A, Francotte F, Vaz G et al (2008) Intraoperative magnetic resonance imaging at 3-T using a dual independent operating room-magnetic resonance imaging suite: development, feasibility, safety, and preliminary experience. Neurosurgery 63:412–424, discussion 424–416

    Article  PubMed  Google Scholar 

  29. Streiner DL, Norman GR (2008) Health measurement scales: a practical guide to their development and use. Oxford University Press, Oxford

    Google Scholar 

  30. Knauth M, Aras N, Wirtz CR, Dorfler A, Engelhorn T, Sartor K (1999) Surgically induced intracranial contrast enhancement: potential source of diagnostic error in intraoperative MR imaging. AJNR Am J Neuroradiol 20:1547–1553

    PubMed  CAS  Google Scholar 

  31. Ekinci G, Akpinar IN, Baltacioglu F et al (2003) Early-postoperative magnetic resonance imaging in glial tumors: prediction of tumor regrowth and recurrence. Eur J Radiol 45:99–107

    Article  PubMed  Google Scholar 

  32. Keles GE, Anderson B, Berger MS (1999) The effect of extent of resection on time to tumor progression and survival in patients with glioblastoma multiforme of the cerebral hemisphere. Surg Neurol 52:371–379

    Article  PubMed  CAS  Google Scholar 

  33. Aronen HJ, Gazit IE, Louis DN et al (1994) Cerebral blood volume maps of gliomas: comparison with tumor grade and histologic findings. Radiology 191:41–51

    PubMed  CAS  Google Scholar 

  34. Rollin N, Guyotat J, Streichenberger N, Honnorat J, Tran Minh VA, Cotton F (2006) Clinical relevance of diffusion and perfusion magnetic resonance imaging in assessing intra-axial brain tumors. Neuroradiology 48:150–159

    Article  PubMed  CAS  Google Scholar 

  35. Sehgal V, Delproposto Z, Haddar D et al (2006) Susceptibility-weighted imaging to visualize blood products and improve tumor contrast in the study of brain masses. J Magn Reson Imaging 24:41–51

    Article  PubMed  Google Scholar 

  36. Lupo JM, Cha S, Chang SM, Nelson SJ (2007) Analysis of metabolic indices in regions of abnormal perfusion in patients with high-grade glioma. AJNR Am J Neuroradiol 28:1455–1461

    Article  PubMed  CAS  Google Scholar 

  37. Lehmann P, Saliou G, De Marco G et al (2011) Cerebral peritumoral oedema study: does a single dynamic MR sequence assessing perfusion and permeability can help to differentiate glioblastoma from metastasis? Eur J Radiol 81:522-527

    Google Scholar 

Download references

Acknowledgments

First authors: T. Smets and T. M. Lawson contributed equally to the manuscript. Last authors: A. Jankovski and C. Raftopoulos contributed equally to the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksandar Jankovski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smets, T., Lawson, T.M., Grandin, C. et al. Immediate post-operative MRI suggestive of the site and timing of glioblastoma recurrence after gross total resection: a retrospective longitudinal preliminary study. Eur Radiol 23, 1467–1477 (2013). https://doi.org/10.1007/s00330-012-2762-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-012-2762-1

Keywords

Navigation