Skip to main content
Log in

Accuracy and speed of robotic assisted needle interventions using a modern cone beam computed tomography intervention suite: a phantom study

  • Interventional
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objective

To analyse the feasibility and accuracy of robotic aided interventions on a phantom when using a modern C-arm-mounted cone beam computed tomography (CBCT) device in combination with needle guidance software.

Methods

A small robotic device capable of holding and guiding needles was attached to the intervention table. After acquiring a 3D data set the access path was planned on the CBCT workstation and shown on the intervention monitor. Then the robot was aligned to the live fluorosopic image. A total of 40 punctures were randomly conducted on a phantom armed with several targets (diameter 2 mm) in single and double oblique trajectory (n = 20 each). Target distance, needle deviation and time for the procedures were analysed.

Results

All phantom interventions (n = 40) could be performed successfully. Mean target access path within the phantom was 8.5 cm (min 4.2 cm, max 13.5 cm). Average needle tip deviation was 1.1 mm (min 0 mm, max 4.5 mm), time duration was 3:59 min (min 2:07 min, max 10:37 min).

Conclusion

When using the proposed robot device in a CBCT intervention suite, highly accurate needle-based interventional punctures are possible in a reasonable timely manner in single as well as in double oblique trajectories.

Key Points

Percutaneous image-guided biopsy is an important contribution of modern radiology.

A compact robotic device has been developed which may facilitate such procedures.

Accurate needle-based interventions are possible in a timely manner.

Complex trajectories and even deep access paths are possible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Gupta R, Cheung AC, Bartling SH et al (2008) Flat-panel volume CT: fundamental principles, technology, and applications. Radiographics 28:2009–2022

    Article  PubMed  Google Scholar 

  2. Vogl TJ, Naguib NN, Nour-Eldin NE, Lehnert T, Mbalisike E (2009) C-arm computed tomography for transarterial chemoperfusion and chemo-embolization of thoracic lesions. Radiologe 49:837–841

    Article  PubMed  CAS  Google Scholar 

  3. Kamran M, Nagaraja S, Byrne JV (2010) C-arm flat detector computed tomography: the technique and its applications in interventional neuro-radiology. Neuroradiology 52:319–327

    Article  PubMed  Google Scholar 

  4. Jin KN, Park CM, Goo JM et al (2010) Initial experience of percutaneous transthoracic needle biopsy of lung nodules using C-arm cone-beam CT systems. Eur Radiol 20:2108–2115

    Article  PubMed  Google Scholar 

  5. Zangos S, Melzer A, Eichler K et al (2011) MR-compatible assistance system for biopsy in a high-field-strength system: initial results in patients with suspicious prostate lesions. Radiology 259:903–910

    Article  PubMed  Google Scholar 

  6. Rasmus M, Huegli RW, Bilecen D, Jacob AL (2007) Robotically assisted CT-based procedures. Minim Invasive Ther Allied Technol 16:212–216

    Article  PubMed  CAS  Google Scholar 

  7. Onogi S, Morimoto K, Sakuma I et al (2005) Development of the needle insertion robot for percutaneous vertebroplasty. Med Image Comput Comput Assist Interv 8:105–113

    PubMed  CAS  Google Scholar 

  8. Fichtinger G, Fiene JP, Kennedy CW et al (2008) Robotic assistance for ultrasound-guided prostate brachytherapy. Med Image Anal 12:535–545

    Article  PubMed  Google Scholar 

  9. Cleary K, Melzer A, Watson V, Kronreif G, Stoianovici D (2006) Interventional robotic systems: applications and technology state-of-the-art. Minim Invasive Ther Allied Technol 15:101–113

    Article  PubMed  Google Scholar 

  10. Penzkofer T, Isfort P, Bruners P et al (2010) Robot arm based flat panel CT-guided electromagnetic tracked spine interventions: phantom and animal model experiments. Eur Radiol 20:2656–2662

    Article  PubMed  Google Scholar 

  11. Tam AL, Mohamed A, Pfister M et al (2010) C-arm cone beam computed tomography needle path overlay for fluoroscopic guided vertebroplasty. Spine 35:1095–1099

    PubMed  Google Scholar 

  12. Tovar-Arriaga S, Tita R, Pedraza-Ortega JC, Gorrostieta E, Kalender WA (2011) Development of a robotic FD-CT-guided navigation system for needle placement-preliminary accuracy tests. Int J Med Robot 7:225–236

    Article  PubMed  Google Scholar 

  13. Yanof J, Haaga J, Klahr P et al (2001) CT-integrated robot for interventional procedures: preliminary experiment and computer-human interfaces. Comput Aided Surg 6:352–359

    Article  PubMed  CAS  Google Scholar 

  14. Schell B, Eichler K, Mack MG et al (2012) Robot-assisted biopsies in a high-field MRI system - first clinical results. Rofo 184:42–47

    Article  PubMed  CAS  Google Scholar 

  15. Cleary K, Freedman M, Clifford M, Lindisch D, Onda S, Jiang L (2001) Image-guided robotic delivery system for precise placement of therapeutic agents. J Control Release 74:363–368

    Article  PubMed  CAS  Google Scholar 

  16. Pfleiderer SO, Marx C, Vagner J, Franke RP, Reichenbach JR, Kaiser WA (2005) Magnetic resonance-guided large-core breast biopsy inside a 1.5-T magnetic resonance scanner using an automatic system: in vitro experiments and preliminary clinical experience in four patients. Invest Radiol 40:458–463

    Article  PubMed  Google Scholar 

  17. Cadeddu JA, Bzostek A, Schreiner S et al (1997) A robotic system for percutaneous renal access. J Urol 158:1589–1593

    Article  PubMed  CAS  Google Scholar 

  18. Ritter M, Rassweiler MC, Hacker A, Michel MS (2012) Laser-guided percutaneous kidney access with the Uro Dyna-CT: first experience of three-dimensional puncture planning with an ex vivo model. World J Urol. doi:10.1007/s00345-012-0847-8

  19. Murayama Y, Irie K, Saguchi T et al (2011) Robotic digital subtraction angiography systems within the hybrid operating room. Neurosurgery 68:1427–1432

    PubMed  Google Scholar 

  20. Schulz B, Heidenreich R, Heidenreich M, et al. (2012) Radiation exposure to operating staff during rotational flat-panel angiography and C-arm cone beam computed tomography (CT) applications. Eur J Radiol. doi:10.1016/j.ejrad.2012.01.010

  21. Bai M, Liu B, Mu H, Liu X, Jiang Y (2011) The comparison of radiation dose between C-arm flat-detector CT (DynaCT) and multi-slice CT (MSCT): a phantom study. Eur J Radiol. doi:10.1016/j.ejrad.2011.09.006

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris Schulz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schulz, B., Eichler, K., Siebenhandl, P. et al. Accuracy and speed of robotic assisted needle interventions using a modern cone beam computed tomography intervention suite: a phantom study. Eur Radiol 23, 198–204 (2013). https://doi.org/10.1007/s00330-012-2585-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-012-2585-0

Keywords

Navigation