European Radiology

, Volume 23, Issue 1, pp 174–181 | Cite as

Separation of advanced from mild hepatic fibrosis by quantification of the hepatobiliary uptake of Gd-EOB-DTPA

  • Bengt Norén
  • Mikael Fredrik Forsgren
  • Olof Dahlqvist Leinhard
  • Nils Dahlström
  • Johan Kihlberg
  • Thobias Romu
  • Stergios Kechagias
  • Sven Almer
  • Örjan Smedby
  • Peter Lundberg



To apply dynamic contrast-enhanced (DCE) MRI on patients presenting with elevated liver enzymes without clinical signs of hepatic decompensation in order to quantitatively compare the hepatocyte-specific uptake of Gd-EOB-DTPA with histopathological fibrosis stage.


A total of 38 patients were prospectively examined using 1.5-T MRI. Data were acquired from regions of interest in the liver and spleen by using time series of single-breath-hold symmetrically sampled two-point Dixon 3D images (non-enhanced, arterial and venous portal phase; 3, 10, 20 and 30 min) following a bolus injection of Gd-EOB-DTPA (0.025 mmol/kg). The signal intensity (SI) values were reconstructed using a phase-sensitive technique and normalised using multiscale adaptive normalising averaging (MANA). Liver-to-spleen contrast ratios (LSC_N) and the contrast uptake rate (K Hep) were calculated. Liver biopsy was performed and classified according to the Batts and Ludwig system.


Area under the receiver-operating characteristic curve (AUROC) values of 0.71, 0.80 and 0.78, respectively, were found for K Hep, LSC_N10 and LSC_N20 with regard to severe versus mild fibrosis. Significant group differences were found for K Hep (borderline), LSC_N10 and LSC_N20.


Liver fibrosis stage strongly influences the hepatocyte-specific uptake of Gd-EOB-DTPA. Potentially the normalisation technique and K Hep will reduce patient and system bias, yielding a robust approach to non-invasive liver function determination.

Key Points

In chronic liver disease, staging of hepatic fibrosis is essential for prognosis.

The accuracy of liver biopsy for assessing fibrosis has been questioned.

Liver fibrosis stage strongly influences the hepatocyte-specific uptake of Gd-EOB-DTPA on MRI.

Normalisation technique and K Hep are valuable for non-invasive liver function assessment.


Quantification Gd-EOB-DTPA Dynamic contrast-enhanced MRI Pharmacokinetics Liver 



Financial support from the Swedish Research Council (VR/M 2007–2884), the Medical Research Council of Southeast Sweden (FORSS 12621), the Linköping University, Linköping University Hospital Research Foundations and the County Council of Östergötland is gratefully acknowledged.


  1. 1.
    Bataller R, Brenner DA (2005) Liver fibrosis. J Clin Invest 115:209–218PubMedGoogle Scholar
  2. 2.
    Goldin RD, Goldin JG, Burt AD, Dhillon PA, Hubscher S, Wyatt J (1996) Intra-observer and inter-observer variation in the histopathological assessment of chronic viral hepatitis. J Hepatol 25:649–654PubMedCrossRefGoogle Scholar
  3. 3.
    Kleiner DE, Brunt EM, Van Natta M, Behling C, Contos MJ, Cummings OW et al (2005) Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology 41:1313–1321PubMedCrossRefGoogle Scholar
  4. 4.
    Bedossa P, Dargere D, Paradis V (2003) Sampling variability of liver fibrosis in chronic hepatitis C. Hepatology 38:1449–1457PubMedGoogle Scholar
  5. 5.
    Rousselet MC, Michalak S, Dupre F, Croue A, Bedossa P, Saint-Andre JP et al (2005) Sources of variability in histological scoring of chronic viral hepatitis. Hepatology 41:257–264PubMedCrossRefGoogle Scholar
  6. 6.
    Piccinino F, Sagnelli E, Pasquale G, Giusti G (1986) Complications following percutaneous liver biopsy. A multicentre retrospective study on 68,276 biopsies. J Hepatol 2:165–173PubMedCrossRefGoogle Scholar
  7. 7.
    Regev A, Berho M, Jeffers LJ, Milikowski C, Molina EG, Pyrsopoulos NT et al (2002) Sampling error and intraobserver variation in liver biopsy in patients with chronic HCV infection. Am J Gastroenterol 97:2614–2618PubMedCrossRefGoogle Scholar
  8. 8.
    Bonekamp S, Kamel I, Solga S, Clark J (2009) Can imaging modalities diagnose and stage hepatic fibrosis and cirrhosis accurately? J Hepatol 50:17–35PubMedCrossRefGoogle Scholar
  9. 9.
    Dahlqvist Leinhard O, Dahlstrom N, Kihlberg J, Sandström P, Brismar TB, Smedby O et al (2012) Quantifying differences in hepatic uptake of the liver specific contrast agents Gd-EOB-DTPA and Gd-BOPTA: a pilot study. Eur Radiol 22:642–653PubMedCrossRefGoogle Scholar
  10. 10.
    Batts KP, Ludwig J (1995) Chronic hepatitis. An update on terminology and reporting. Am J Surg Pathol 19:1409–17PubMedCrossRefGoogle Scholar
  11. 11.
    Dixon WT (1984) Simple proton spectroscopic imaging. Radiology 153:189–194PubMedGoogle Scholar
  12. 12.
    Rydell J, Knutsson H, Pettersson J, Johansson A, Farneback G, Dahlqvist O et al (2007) Phase sensitive reconstruction for water/fat separation in MR imaging using inverse gradient. Med Image Comput Comput Assist Interv 10:210–218PubMedGoogle Scholar
  13. 13.
    Rydell J, Johansson A, Dahlqvist Leinhard O, Lundberg P, Borga M (2008) Sensitive reconstruction for water/fat separation in MR imaging using inverse gradient. In: Proceedings of the International Society for Magnetic Resonance in Medicine (ISMRM'08), vol 16, p 1519, Toronto, 2008Google Scholar
  14. 14.
    Romu T, Dahlqvist Leinhard O, Forsgren MF, Almer S, Dahlström N, Kechagias S, et al (2011) Fat water classification of symmetrically sampled two-point Dixon images using biased partial volume effects. In: Proceedings of the International Society for Magnetic Resonance in Medicine (ISMRM'11), vol 19, p 2711, Montreal, 2011Google Scholar
  15. 15.
    Dahlqvist Leinhard O, Johansson A, Rydell J, Smedby Ö, Nyström F, Lundberg P, Borga M (2008) Quantitative abdominal fat estimation using MRI. In: Proceedings of the 19th international conference on pattern recognition (ICPR'08), Tampa, 2008Google Scholar
  16. 16.
    Romu T, Borga M, Dahlqvist O (2011) MANA—multi scale adaptive normalized averaging. In: Proceedings of the IEEE international symposium on biomedical imaging: from nano to macro (ISBI'11), Chicago, 2011, pp 361–364Google Scholar
  17. 17.
    Andersson T, Romu T, Norén B, Forsgren MF, Smedby Ö, Kechagias S, et al. (2012) Selfcalibrated DCE-MRI using scale adaptive normalized averaging (MANA). In: Proceedings of the International Society for Magnetic Resonance in Medicine (ISMRM'12), vol 20, p 2445, Melbourne, 2012Google Scholar
  18. 18.
    Couinaud C (1957) Le foie; études anatomiques et chirurgicales, Paris, MassonGoogle Scholar
  19. 19.
    Motosugi U, Ichikawa T, Sou H, Sano K, Tominaga L, Kitamura T et al (2009) Liver parenchymal enhancement of hepatocyte-phase images in Gd-EOB-DTPA-enhanced MR imaging: which biological markers of the liver function affect the enhancement? J Magn Reson Imaging 30:1042–1046PubMedCrossRefGoogle Scholar
  20. 20.
    Tsuda N, Okada M, Murakami T (2010) New proposal for the staging of nonalcoholic steatohepatitis: evaluation of liver fibrosis on Gd-EOB-DTPA-enhanced MRI. Eur J Radiol 73:137–142PubMedCrossRefGoogle Scholar
  21. 21.
    Ryeom HK, Kim SH, Kim JY, Kim HJ, Lee JM, Chang YM et al (2004) Quantitative evaluation of liver function with MRI Using Gd-EOB-DTPA. Korean J Radiol 5:231–239PubMedCrossRefGoogle Scholar
  22. 22.
    Yamada A, Hara T, Li F, Fujinaga Y, Ueda K, Kadoya M et al (2011) Quantitative evaluation of liver function with use of gadoxetate disodium-enhanced MR imaging. Radiology 260:727–733PubMedCrossRefGoogle Scholar
  23. 23.
    Lee WJ, Cha SH, Kim MY, Chung HH, Lee SW, Yi A et al (2011) Quantitative evaluation of the hepatic parenchymal change in patients with chronic liver disease using Gd-EOB-DTPA-enhanced MRI: comparison with normal liver. J Korean Soc Radiol 64:49–55Google Scholar
  24. 24.
    Watanabe H, Kanematsu M, Goshima S, Kondo H, Onozuka M, Moriyama N et al (2011) Staging hepatic fibrosis: comparison of gadoxetate disodium-enhanced and diffusion-weighted MR imaging–preliminary observations. Radiology 259:142–150PubMedCrossRefGoogle Scholar
  25. 25.
    Chen BB, Hsu CY, Yu CW, Wei SY, Kao JH, Lee HS et al (2012) Dynamic contrast-enhanced magnetic resonance imaging with Gd-EOB-DTPA for the evaluation of liver fibrosis in chronic hepatitis patients. Eur Radiol 22:171–180PubMedCrossRefGoogle Scholar
  26. 26.
    Leonhardt M, Keiser M, Oswald S, Kühn J, Jia J, Grube M et al (2010) Hepatic uptake of the magnetic resonance imaging contrast agent Gd-EOB-DTPA: role of human organic anion transporters. Drug Metab Dispos 38:1024–1028PubMedCrossRefGoogle Scholar
  27. 27.
    Narita M, Hatano E, Arizono S, Miyagawa-Hayashino A, Isoda H, Kitamura K et al (2009) Expression of OATP1B3 determines uptake of Gd-EOB-DTPA in hepatocellular carcinoma. J Gastroenterol 44:793–798PubMedCrossRefGoogle Scholar
  28. 28.
    Muhler A, Oude Elferink RPJ, Weinmann H-J (1993) Complete elimination of the hepatobiliary mr contrast agent Gd-EOB-DTPA in hepatic dysfunction: an experimental study using transport-deficient, mutant rats. Magma 1:134–139CrossRefGoogle Scholar
  29. 29.
    Konig J, Nies AT, Cui Y, Leier I, Keppler D (1999) Conjugate export pumps of the multidrug resistance protein (MRP) family: localization, substrate specificity, and MRP2-mediated drug resistance. Biochim Biophys Acta 1461:377–394PubMedCrossRefGoogle Scholar
  30. 30.
    Norén B, Lundberg P, Ressner M, Wirell S, Almer S, Smedby Ö (2005) Absolute quantification of human liver metabolite concentrations by localized in vivo 31P NMR spectroscopy in diffuse liver disease. Eur Radiol 15:148–157PubMedCrossRefGoogle Scholar
  31. 31.
    Norén B, Dahlqvist O, Lundberg P, Almer S, Kechagias S, Ekstedt M (2008) Separation of advanced from mild fibrosis in diffuse liver disease using 31P magnetic resonance spectroscopy. Eur J Radiol 66:313–320PubMedCrossRefGoogle Scholar
  32. 32.
    Huwart L, Sempoux C, Salameh N, Jamart J, Annet L, Sinkus R et al (2007) Liver fibrosis: noninvasive assessment with MR elastography versus aspartate aminotransferase-to-platelet ratio index. Radiology 245:458–466PubMedCrossRefGoogle Scholar
  33. 33.
    Huwart L, Sempoux C, Vicaut E, Salameh N, Annet L, Danse E et al (2008) Magnetic resonance elastography for the noninvasive staging of liver fibrosis. Gastroenterology 135:32–40PubMedCrossRefGoogle Scholar
  34. 34.
    Ehman RL (2009) Science to practice: can MR elastography be used to detect early steatohepatitis in fatty liver disease? Radiology 253:1–3PubMedCrossRefGoogle Scholar
  35. 35.
    Yin M, Talwalkar JA, Glaser KJ, Venkatesh SK, Chen J, Manduca A et al (2011) Dynamic postprandial hepatic stiffness augmentation assessed with MR elastography in patients with chronic liver disease. AJR Am J Roentgenol 197:64–70PubMedCrossRefGoogle Scholar

Copyright information

© European Society of Radiology 2012

Authors and Affiliations

  • Bengt Norén
    • 1
    • 2
  • Mikael Fredrik Forsgren
    • 1
    • 3
  • Olof Dahlqvist Leinhard
    • 1
    • 3
  • Nils Dahlström
    • 1
    • 2
  • Johan Kihlberg
    • 1
    • 2
  • Thobias Romu
    • 1
    • 4
  • Stergios Kechagias
    • 5
  • Sven Almer
    • 6
  • Örjan Smedby
    • 1
    • 2
  • Peter Lundberg
    • 1
    • 3
  1. 1.Center for Medical Image Science and Visualization (CMIV)Linköping UniversityLinköpingSweden
  2. 2.Department of Medical and Health Sciences (IMH) and Department of Radiology, UHL County Council of ÖstergötlandLinköping UniversityLinköpingSweden
  3. 3.Department of Medical and Health Sciences (IMH) and Department of Radiation Physics, UHL County Council of ÖstergötlandLinköping UniversityLinköpingSweden
  4. 4.Department of Biomedical Engineering (IMT)Linköping UniversityLinköpingSweden
  5. 5.Department of Medical and Health Sciences (IMH) and Department of Gastroenterology, UHL County Council of ÖstergötlandLinköping UniversityLinköpingSweden
  6. 6.Department of Clinical and Experimental Medicine (IKE) and Department of Gastroenterology, UHL County Council of ÖstergötlandLinköping UniversityLinköpingSweden

Personalised recommendations