Skip to main content

Advertisement

Log in

1H MR spectroscopy with external reference solution at 1.5 T for differentiating malignant and benign breast lesions: comparison using qualitative and quantitative approaches

  • Breast
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objective

To compare the diagnostic capability of proton (1H) magnetic resonance spectroscopy (MRS) in differentiating benign from malignant breast lesions on the basis of qualitative and quantitative approaches.

Methods

We performed single-voxel 1H MRS for 208 breast lesions, identified a clear total composite choline compounds (tCho) peak of signal-to-noise of ≥2 to represent malignancy (qualitative approach), and regarded tCho concentration equal to or greater than the cut-off value to represent malignancy (quantitative approach). We compared the diagnostic ability of both approaches using the Akaike information criterion (AIC) and McFadden’s R 2.

Results

Histologically, 169 lesions were malignant; 39 were benign. The qualitative approach demonstrated 84.6 % sensitivity and 51.3 % specificity for differentiating malignant and benign lesions. The mean tCho concentration was 1.13 mmol/kg for malignancy, 0.43 mmol/kg for benignity. The optimal cut-off point was 0.61 mmol/kg, use of which achieved 68.1 % sensitivity and 79.4 % specificity. Calculated AIC and R 2 score suggested the superiority of the quantitative approach for differentiating malignancy.

Conclusions

Quantitative MRS provides higher specificity than qualitative MRS for differentiating malignant from benign lesions and could be more useful as an additional examination in routine breast MR imaging.

Key Points

Magnetic resonance spectroscopy of the breast helps distinguish malignant from benign lesions.

Magnetic resonance spectra demonstrate a choline signal even from benign lesions.

Choline concentration is higher in breast carcinomas than in benign lesions.

Quantitative magnetic resonance spectroscopy differentiates breast malignancies better than qualitative MRS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gavenonis SC, Roth SO (2010) Role of magnetic resonance imaging in evaluating the extent of disease. Magn Reson Imaging Clin N Am 18:199–206

    Article  PubMed  Google Scholar 

  2. Moon M, Cornfeld D, Weinreb J (2009) Dynamic contrast-enhanced breast MR imaging. Magn Reson Imaging Clin N Am 17:351–362

    Article  PubMed  Google Scholar 

  3. Hambly NM, Liberman L, Dershaw DD, Brennan S, Morris EA (2011) Background parenchymal enhancement on baseline screening breast MRI: impact on biopsy rate and short-interval follow-up. AJR Am J Roentgenol 196:218–224

    Article  PubMed  Google Scholar 

  4. El Khouli RH, Macura KJ, Jacobs MA et al (2009) Dynamic contrast-enhanced MRI of the breast: quantitative method for kinetic curve type assessment. AJR Am J Roentgenol 193:W295–W300

    Article  PubMed  Google Scholar 

  5. Brinck U, Fischer U, Korabiowska M, Jutrowski M, Schauer A, Grabbe E (1997) The variability of fibroadenoma in contrast-enhanced dynamic MR mammography. AJR Am J Roentgenol 168:1331–1334

    PubMed  CAS  Google Scholar 

  6. Woodhams R, Matsunaga K, Kan S et al (2005) ADC mapping of benign and malignant breast tumors. Magn Reson Med Sci 4:35–42

    Article  PubMed  Google Scholar 

  7. Imamura T, Isomoto I, Sueyoshi E et al (2010) Diagnostic performance of ADC for non-mass-like breast lesions on MR imaging. Magn Reson Med Sci 9:217–225

    Article  PubMed  Google Scholar 

  8. Inoue K, Kozawa E, Mizukoshi W et al (2011) Usefulness of diffusion-weighted imaging of breast tumors: quantitative and visual assessment. Jpn J Radiol 29:429–436

    Article  PubMed  Google Scholar 

  9. Sardanelli F, Fausto A, Podo F (2008) MR spectroscopy of the breast. Radiol Med 113:56–64

    Article  PubMed  CAS  Google Scholar 

  10. Payne GS, Dowsett M, Leach MO (1994) Hormone-dependent metabolic changes in the normal breast monitored noninvasively by 31P magnetic resonance (MR) spectroscopy. Breast 3:20–23

    Article  Google Scholar 

  11. Venkatesh SK, Gupta RK, Pal L, Husain N, Husain M (2001) Spectroscopic increase in choline signal is a nonspecific marker for differentiation of infective/inflammatory from neoplastic lesions of the brain. J Magn Reson Imaging 14:8–15

    Article  PubMed  CAS  Google Scholar 

  12. Tse GM, Yeung DK, King AD, Cheung HS, Yang WT (2007) In vivo proton magnetic resonance spectroscopy of breast lesions: an update. Breast Cancer Res Treat 104:249–255

    Article  PubMed  Google Scholar 

  13. Yeung DKY, Cheung HS, Tse GM (2001) Human breast lesions: characterization with contrast-enhanced in vivo proton MR spectroscopy–initial results. Radiology 220:40–46

    PubMed  CAS  Google Scholar 

  14. Sardanelli F, Fausto A, Di Leo G, de Nijs R, Vorbuchner M, Podo F (2009) In vivo proton MR spectroscopy of the breast using the total choline peak integral as a marker of malignancy. AJR Am J Roentgenol 192:1608–1617

    Article  PubMed  Google Scholar 

  15. Meisamy S, Bolan PJ, Baker EH et al (2005) Adding in vivo quantitative 1H MR spectroscopy to improve diagnostic accuracy of breast MR imaging: preliminary results of observer performance study at 4.0 T. Radiology 236:465–475

    Article  PubMed  Google Scholar 

  16. Corum CA, McIntosh AD, Bolan PJ et al (2009) Feasibility of single-voxel MRS measurement of apparent diffusion coefficient of water in breast tumor. Magn Reson Med 61:1232–1237

    Article  PubMed  CAS  Google Scholar 

  17. Star-Lack J, Nelson SJ, Kurhanewicz J, Huang LR, Vigneron DB (1997) Improved water and lipid suppression for 3D PRESS CSI using RF band selective inversion with gradient dephasing (BASING). Magn Reson Med 38:311–321

    Article  PubMed  CAS  Google Scholar 

  18. Tozaki M, Hoshi K (2010) 1H MR spectroscopy of invasive ductal carcinoma: correlations with FDG PET and histologic prognostic factors. AJR Am J Roentgenol 194:1384–1390

    Article  PubMed  Google Scholar 

  19. Baik HM, Su MY, Yu H, Mehta R, Nalcioglu O (2006) Quantification of choline-containing compounds in malignant breast tumors by 1H MR spectroscopy using water as an internal reference at 1.5 T. MAGMA 19:96–104

    Article  PubMed  CAS  Google Scholar 

  20. Stanwell P, Mountford C (2007) In vivo proton MR spectroscopy of the breast. RadioGraphics 27:S253–S266

    Article  PubMed  Google Scholar 

  21. Stanwell P, Gluch L, Clark D et al (2005) Specificity of choline metabolites for in vivo diagnosis of breast cancer using 1H MRS at 1.5 T. Eur Radiol 15:1037–1043

    Article  PubMed  Google Scholar 

  22. Bartella L, Morris EA, Dershaw DD et al (2006) Proton MR spectroscopy with choline peak as malignancy marker improves positive predictive value for breast cancer diagnosis: preliminary study. Radiology 239:686–692

    Article  PubMed  Google Scholar 

  23. Klijn S, De Visschere PJ, De Meerleer GO, Villeirs GM (2010) Comparison of qualitative and quantitative approach to prostate MR spectroscopy in peripheral zone cancer detection. Eur J Radiol 81:411–416

    Article  Google Scholar 

  24. Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control AC-19:716–723

    Article  Google Scholar 

  25. McFadden D (1973) Conditional logit analysis of qualitative choice behavior. In: Zarembka P (ed) Frontiers in econometrics. Academic, New York, pp 105–142

    Google Scholar 

  26. Hoskins G, Williams B, Jackson C, Norman PD, Donnan PT (2011) Assessing asthma control in UK primary care: use of routinely collected prospective observational consultation data to determine appropriateness of a variety of control assessment models. BMC Fam Pract 12:105

    Article  PubMed  Google Scholar 

  27. Chen JH, Mehta RS, Baek HM et al (2011) Clinical characteristics and biomarkers of breast cancer associated with choline concentration measured by 1H MRS. NMR Biomed 24:316–324

    Article  PubMed  CAS  Google Scholar 

  28. Huang W, Fisher PR, Dulaimy K, Tudorica LA, O’Hea B, Button TM (2004) Detection of breast malignancy: diagnostic MR protocol for improved specificity. Radiology 232:585–591

    Article  PubMed  Google Scholar 

  29. Kvistad KA, Bakken IJ, Gribbestad IS et al (1999) Characterization of neoplastic and normal human breast tissues with in vivo (1)H MR spectroscopy. J Magn Reson Imaging 10:159–164

    Article  PubMed  CAS  Google Scholar 

  30. Roebuck JR, Cecil KM, Schnall MD, Lenkinski RE (1998) Human breast lesions: characterization with proton MR spectroscopy. Radiology 209:269–275

    PubMed  CAS  Google Scholar 

  31. Cecil KM, Schnall MD, Siegelman ES, Lenkinski RE (2001) The evaluation of human breast lesions with magnetic resonance imaging and proton magnetic resonance spectroscopy. Breast Cancer Res Treat 68:45–54

    Article  PubMed  CAS  Google Scholar 

  32. Jagannathan NR, Kumar M, Seenu V et al (2001) Evaluation of total choline from in-vivo volume localized proton MR spectroscopy and its response to neoadjuvant chemotherapy in locally advanced breast cancer. Br J Cancer 84:1016–1022

    Article  PubMed  CAS  Google Scholar 

  33. Tse GM, Cheung HS, Pang LM et al (2003) Characterization of lesions of the breast with proton MR spectroscopy: comparison of carcinomas, benign lesions, and phyllodes tumors. AJR Am J Roentgenol 181:1267–1272

    PubMed  Google Scholar 

  34. Tozaki M (2011) Appropriate timing of proton MR spectroscopy in breast cancer. Magn Reson Med Sci 10:71–77

    Article  PubMed  CAS  Google Scholar 

  35. Tozaki M, Sakamoto M, Oyama Y, Maruyama K, Fukuma E (2010) Predicting pathological response to neoadjuvant chemotherapy in breast cancer with quantitative 1H MR spectroscopy using the external standard method. J Magn Reson Imaging 31:895–902

    Article  PubMed  Google Scholar 

  36. Bolan PJ, Meisamy S, Baker EH et al (2003) In vivo quantification of choline compounds in the breast with 1H MR spectroscopy. Magn Reson Med 50:1134–1143

    Article  PubMed  CAS  Google Scholar 

  37. Joe BN, Chen VY, Salibi N, Fuangtharntip P, Hildebolt CF, Bae KT (2005) Evaluation of 1H-magnetic resonance spectroscopy of breast cancer pre- and postgadolinium administration. Investig Radiol 40:405–411

    Article  Google Scholar 

  38. Bolan PJ, DelaBarre L, Baker EH et al (2002) Eliminating spurious lipid sidebands in 1H MRS of breast lesions. Magn Reson Med 48:215–222

    Article  PubMed  Google Scholar 

  39. Jacobs MA, Barker PB, Argani P, Ouwerkerk R, Bhujwalla ZM, Bluemke DA (2005) Combined dynamic contrast enhanced breast MR and proton spectroscopic imaging: a feasibility study. J Magn Reson Imaging 21:23–28

    Article  PubMed  Google Scholar 

  40. Bartha R (2007) Effect of signal-to-noise ratio and spectral linewidth on metabolite quantification at 4 T. NMR Biomed 20:512–521

    Article  PubMed  CAS  Google Scholar 

  41. Lenkinski RE, Wang X, Elian M, Goldberg SN (2009) Interaction of gadolinium-based MR contrast agents with choline: implications for MR spectroscopy of the breast. Magn Reson Med 61:1286–1292

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported in part by a research grant from Bayer Healthcare, Japan. We thank Mr Shin Takahashi for his help with the statistical analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Waka Mizukoshi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mizukoshi, W., Kozawa, E., Inoue, K. et al. 1H MR spectroscopy with external reference solution at 1.5 T for differentiating malignant and benign breast lesions: comparison using qualitative and quantitative approaches. Eur Radiol 23, 75–83 (2013). https://doi.org/10.1007/s00330-012-2555-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-012-2555-6

Keywords

Navigation