A systematic review of the utility of 1.5 versus 3 Tesla magnetic resonance brain imaging in clinical practice and research



MRI at 3 T is said to be more accurate than 1.5 T MR, but costs and other practical differences mean that it is unclear which to use.


We systematically reviewed studies comparing diagnostic accuracy at 3 T with 1.5 T. We searched MEDLINE, EMBASE and other sources from 1 January 2000 to 22 October 2010 for studies comparing diagnostic accuracy at 1.5 and 3 T in human neuroimaging. We extracted data on methodology, quality criteria, technical factors, subjects, signal-to-noise, diagnostic accuracy and errors according to QUADAS and STARD criteria.


Amongst 150 studies (4,500 subjects), most were tiny, compared old 1.5 T with new 3 T technology, and only 22 (15 %) described diagnostic accuracy. The 3 T images were often described as “crisper”, but we found little evidence of improved diagnosis. Improvements were limited to research applications [functional MRI (fMRI), spectroscopy, automated lesion detection]. Theoretical doubling of the signal-to-noise ratio was not confirmed, mostly being 25 %. Artefacts were worse and acquisitions took slightly longer at 3 T.


Objective evidence to guide MRI purchasing decisions and routine diagnostic use is lacking. Rigorous evaluation accuracy and practicalities of diagnostic imaging technologies should be the routine, as for pharmacological interventions, to improve effectiveness of healthcare.

Key Points

Higher field strength MRI may improve image quality and diagnostic accuracy.

There are few direct comparisons of 1.5 and 3 T MRI.

Theoretical doubling of the signal-to-noise ratio in practice was only 25 %.

Objective evidence of improved routine clinical diagnosis is lacking.

Other aspects of technology improved images more than field strength.

This is a preview of subscription content, access via your institution.

Fig. 1


  1. 1.

    Wellcome Trust (2011) Human functional brain imaging 1990–2009: portfolio review. Wellcome Trust, London

    Google Scholar 

  2. 2.

    Alvarez-Linera J (2008) 3 T MRI: advances in brain imaging. Eur J Radiol 67:415–426

    PubMed  Article  Google Scholar 

  3. 3.

    Frayne R, Goodyear BG, Dickhoff P, Lauzon ML, Sevick RJ (2003) Magnetic resonance imaging at 3.0 Tesla: challenges and advantages in clinical neurological imaging. Invest Radiol 38:385–402

    PubMed  Google Scholar 

  4. 4.

    Weintraub MI, Khoury A, Cole SP (2007) Biologic effects of 3 Tesla (T) MR imaging comparing traditional 1.5 T and 0.6 T in 1023 consecutive outpatients. J Neuroimaging 17:241–245

    PubMed  Article  Google Scholar 

  5. 5.

    de Vocht F, Stevens T, van Wendel-de-Joode B, Engels H, Kromhout H (2006) Acute neurobehavioral effects of exposure to static magnetic fields: analyses of exposure-response relations. J Magn Reson Imaging 23:291–297

    PubMed  Article  Google Scholar 

  6. 6.

    Millennium Research Group (2011) Funding frugality: US health care facilities reduce imaging spending. http://mrg.net/News-and-Events/Medtech-Confidence-Index/Funding-Frugality.aspx. Accessed 9 Nov 2011

  7. 7.

    McKinsey Global Institute (2008) Accounting for the cost of U.S. health care: a new look at why Americans spend more. http://www.mckinsey.com/Insights/MGI/Research/Americas/Accounting_for_the_cost_of_US_health_care. Accessed 11 Nov 2011

  8. 8.

    Farah MJ (2009) A picture is worth a thousand dollars. J Cogn Neurosci 21:623–624

    PubMed  Article  Google Scholar 

  9. 9.

    Roskies AL (2007) Are neuroimages like photographs of the brain? Philos Sci 74:860–872

    Article  Google Scholar 

  10. 10.

    Wardlaw JM, Schafer B (2011) What am I thinking and who has the right to know? Contributions from a workshop on the wider societal implications of neuroimaging. Cortex 47:1147–1150

    PubMed  Article  Google Scholar 

  11. 11.

    Whiting PF, Weswood ME, Rutjes AW, Reitsma JB, Bossuyt PN, Kleijnen J (2006) Evaluation of QUADAS, a tool for the quality assessment of diagnostic accuracy studies. BMC Med Res Methodol 6:9

    PubMed  Article  Google Scholar 

  12. 12.

    Bossuyt PM, Reitsma JB, Bruns DE et al (2003) Towards complete and accurate reporting of studies of diagnostic accuracy: the STARD initiative. Clin Radiol 58:575–580

    PubMed  Article  CAS  Google Scholar 

  13. 13.

    Gaa J, Weidauer S, Requardt M, Kiefer B, Lanfermann H, Zanella FE (2004) Comparison of intracranial 3D-ToF-MRA with and without parallel acquisition techniques at 1.5 T and 3.0 T: preliminary results. Acta Radiol 45:327–332

    PubMed  Article  CAS  Google Scholar 

  14. 14.

    Bernstein MA, Huston JI, Lin C, Gibbs GF, Felmlee JP (2001) High-resolution intracranial and cervical MRA at 3.0 T: technical considerations and initial experience. Magn Reson Med 46:955–962

    PubMed  Article  CAS  Google Scholar 

  15. 15.

    Zou Z, Ma L, Cheng L, Cai Y, Meng X (2008) Time-resolved contrast-enhanced MR angiography of intracranial lesions. J Magn Reson Imaging 27:692–699

    PubMed  Article  Google Scholar 

  16. 16.

    Willinek WA, Born M, Simon B et al (2003) Time-of-flight MR angiography: comparison of 3.0-T imaging and 1.5-T imaging—initial experience. Radiology 229:913–920

    PubMed  Article  Google Scholar 

  17. 17.

    Kantarci K, Reynolds G, Petersen RC et al (2003) Proton MR spectroscopy in mild cognitive impairment and Alzheimer disease: comparison of 1.5 and 3 T. AJNR Am J Neuroradiol 24:843–849

    PubMed  Google Scholar 

  18. 18.

    Barker PB, Hearshen DO, Boska MD (2001) Single-voxel proton MRS of the human brain at 1.5 T and 3.0 T. Magn Reson Med 45:765–769

    PubMed  Article  CAS  Google Scholar 

  19. 19.

    Inglese M, Spindler M, Babb JS, Sunenshine P, Law M, Gonen O (2006) Field, coil, and echo-time influence on sensitivity and reproducibility of brain proton MR spectroscopy. AJNR Am J Neuroradiol 27:684–688

    PubMed  CAS  Google Scholar 

  20. 20.

    Li Y, Osorio JA, Ozturk-Isik E et al (2006) Considerations in applying 3D PRESS H-1 brain MRSI with an eight-channel phased-array coil at 3 T. Magn Reson Imaging 24:1295–1302

    PubMed  Article  Google Scholar 

  21. 21.

    Sjobakk TE, Lundgren S, Kristoffersen A et al (2006) Clinical 1 H magnetic resonance spectroscopy of brain metastases at 1.5 T and 3 T. Acta Radiol 47:501–508

    PubMed  Article  CAS  Google Scholar 

  22. 22.

    Kim JH, Chang KH, Na DG et al (2006) Comparison of 1.5 T and 3 T 1 H MR spectroscopy for human brain tumors. Korean J Radiol 7:156–161

    PubMed  Article  Google Scholar 

  23. 23.

    Al-Kwifi O, Emery DJ, Wilman AH (2002) Vessel contrast at three Tesla in time-of-flight magnetic resonance angiography of the intracranial and carotid arteries. Magn Reson Imaging 20:181–187

    PubMed  Article  Google Scholar 

  24. 24.

    Krautmacher C, Willinek WA, Tschampa HJ et al (2005) Brain tumors: full- and half-dose contrast-enhanced MR imaging at 3.0 T compared with 1.5 T—initial experience. Radiology 237:1014–1019

    PubMed  Article  Google Scholar 

  25. 25.

    Nobauer-Huhmann IM, Ba-Ssalamah A, Mlynarik V et al (2002) Magnetic resonance imaging contrast enhancement of brain tumors at 3 Tesla versus 1.5 Tesla. Invest Radiol 37:114–119

    PubMed  Article  Google Scholar 

  26. 26.

    Wolfsberger S, Ba-Ssalamah A, Pinker K et al (2004) Application of three-tesla magnetic resonance imaging for diagnosis and surgery of sellar lesions. J Neurosurg 100:278–286

    PubMed  Article  Google Scholar 

  27. 27.

    Ramgren B, Siemund R, Cronqvist M et al (2008) Follow-up of intracranial aneurysms treated with detachable coils: comparison of 3D inflow MRA at 3 T and 1.5 T and contrast-enhanced MRA at 3 T with DSA. Neuroradiology 50:947–954

    PubMed  Article  Google Scholar 

  28. 28.

    Knake S, Triantafyllou C, Wald LL et al (2005) 3 T phased array MRI improves the presurgical evaluation in focal epilepsies: a prospective study. Neurology 65:1026–1031

    PubMed  Article  CAS  Google Scholar 

  29. 29.

    Sawaishi Y, Sasaki M, Yano T, Hirayama A, Akabane J, Takada G (2005) A hippocampal lesion detected by high-field 3 tesla magnetic resonance imaging in a patient with temporal lobe epilepsy. Tohoku J Exp Med 205:287–291

    PubMed  Article  Google Scholar 

  30. 30.

    Kim LJ, Lekovic GP, White WL, Karis J (2007) Preliminary experience with 3-Tesla MRI and Cushing's disease. Skill Base 17:273–277

    Article  Google Scholar 

  31. 31.

    Schaafsma JD, Velthuis BK, Majoie CB et al (2010) Intracranial aneurysms treated with coil placement: test characteristics of follow-up MR angiography—multicenter study. Radiology 256:209–218

    PubMed  Article  Google Scholar 

  32. 32.

    Sicotte NL, Voskuhl RR, Bouvier S, Klutch R, Cohen MS, Mazziotta JC (2003) Comparison of multiple sclerosis lesions at 1.5 and 3.0 Tesla. Invest Radiol 38:423–427

    PubMed  Google Scholar 

  33. 33.

    Zou KH, Greve DN, Wang M et al (2005) Reproducibility of functional MR imaging: preliminary results of prospective multi-institutional study performed by Biomedical Informatics Research Network. Radiology 237:781–789

    PubMed  Article  Google Scholar 

  34. 34.

    Bachmann R, Reilmann R, Schwindt W, Kugel H, Heindel W, Kramer S (2006) FLAIR imaging for multiple sclerosis: a comparative MR study at 1.5 and 3.0 Tesla. Eur Radiol 16:915–921

    PubMed  Article  Google Scholar 

  35. 35.

    Kaufmann TJ, Huston J 3rd, Cloft HJ et al (2010) A prospective trial of 3T and 1.5T time-of-flight and contrast-enhanced MR angiography in the follow-up of coiled intracranial aneurysms. AJNR Am J Neuroradiol 31:912–918

    PubMed  Article  CAS  Google Scholar 

  36. 36.

    Wattjes MP, Lutterbey GG, Harzheim M et al (2006) Higher sensitivity in the detection of inflammatory brain lesions in patients with clinically isolated syndromes suggestive of multiple sclerosis using high field MRI: an intraindividual comparison of 1.5 T with 3.0 T. Eur Radiol 16:2067–2073

    PubMed  Article  Google Scholar 

  37. 37.

    Simon B, Schmidt S, Lukas C et al (2010) Improved in vivo detection of cortical lesions in multiple sclerosis using double inversion recovery MR imaging at 3 Tesla. Eur Radiol 20:1675–1683

    PubMed  Article  Google Scholar 

  38. 38.

    Buhk JH, Kallenberg K, Mohr A, Dechent P, Knauth M (2008) No advantage of time-of-flight magnetic resonance angiography at 3 Tesla compared to 1.5 Tesla in the follow-up after endovascular treatment of cerebral aneurysms. Neuroradiology 50:855–861

    PubMed  Article  Google Scholar 

  39. 39.

    Rosso C, Drier A, Lacroix D et al (2010) Diffusion-weighted MRI in acute stroke within the first 6 hours: 1.5 or 3.0 Tesla? Neurology 74:1946–1953

    PubMed  Article  CAS  Google Scholar 

  40. 40.

    Haacke EM, Makki M, Ge Y et al (2009) Characterizing iron deposition in multiple sclerosis lesions using susceptibility weighted imaging. J Magn Reson Imaging 29:537–544

    PubMed  Article  Google Scholar 

  41. 41.

    Kuhl CK, Textor J, Gieseke J et al (2005) Acute and subacute ischemic stroke at high-field-strength (3.0-T) diffusion-weighted MR imaging: intraindividual comparative study. Radiology 234:509–516

    PubMed  Article  Google Scholar 

  42. 42.

    Heidenreich JO, Schilling AM, Unterharnscheidt F et al (2007) Assessment of 3D-TOF-MRA at 3.0 Tesla in the characterization of the angioarchitecture of cerebral arteriovenous malformations: a preliminary study. Acta Radiol 48:678–686

    PubMed  Article  CAS  Google Scholar 

  43. 43.

    Stehling C, Wersching H, Kloska SP et al (2008) Detection of asymptomatic cerebral microbleeds: a comparative study at 1.5 and 3.0 T. Acad Radiol 15:895–900

    PubMed  Article  Google Scholar 

  44. 44.

    Sohn CH, Sevick RJ, Frayne R, Chang HW, Kim SP, Kim DK (2010) Fluid attenuated inversion recovery (FLAIR) imaging of the normal brain: comparisons between under the conditions of 3.0 Tesla and 1.5 Tesla. Korean J Radiol 11:19–24

    PubMed  Article  Google Scholar 

  45. 45.

    van der Zwaag W, Francis S, Head K et al (2009) fMRI at 1.5, 3 and 7 T: characterising BOLD signal changes. Neuroimage 47:1425–1434

    PubMed  Article  Google Scholar 

  46. 46.

    Hu HH, Haider CR, Campeau NG, Huston JI, Riederer SJ (2008) Intracranial contrast-enhanced magnetic resonance venography with 6.4-fold sensitivity encoding at 1.5 and 3.0 Tesla. J Magn Reson Imaging 27:653–658

    PubMed  Article  Google Scholar 

  47. 47.

    Gibbs GF, Huston JI, Bernstein MA, Riederer SJ, Brown RD Jr (2004) Improved image quality of intracranial aneurysms: 3.0-T versus 1.5-T time-of-flight MR angiography. AJNR Am J Neuroradiol 25:84–87

    PubMed  Google Scholar 

  48. 48.

    Fushimi Y, Miki Y, Kikuta K et al (2006) Comparison of 3.0- and 1.5-T three-dimensional time-of-flight MR angiography in moyamoya disease: preliminary experience. Radiology 239:232–237

    PubMed  Article  Google Scholar 

  49. 49.

    Anzalone N, Scomazzoni F, Cirillo M et al (2008) Follow-up of coiled cerebral aneurysms: comparison of three-dimensional time-of-flight magnetic resonance angiography at 3 Tesla with three-dimensional time-of-flight magnetic resonance angiography and contrast-enhanced magnetic resonance angiography at 1.5 Tesla. Invest Radiol 43:559–567

    PubMed  Article  Google Scholar 

  50. 50.

    Barth M, Nobauer-Huhmann IM, Reichenbach JR et al (2003) High-resolution three-dimensional contrast-enhanced blood oxygenation level-dependent magnetic resonance venography of brain tumors at 3 Tesla: first clinical experience and comparison with 1.5 Tesla. Invest Radiol 38:409–414

    PubMed  CAS  Google Scholar 

  51. 51.

    Ba-Ssalamah A, Nobauer-Huhmann IM, Pinker K et al (2003) Effect of contrast dose and field strength in the magnetic resonance detection of brain metastases. Invest Radiol 38:415–422

    PubMed  Google Scholar 

  52. 52.

    Agati R, Maffei M, Bacci A, Cevolani D, Battaglia S, Leonardi M (2004) 3 T MR assessment of pituitary microadenomas: a report of six cases. Riv Neuroradiol 17:890–895

    Google Scholar 

  53. 53.

    Nielsen K, Rostrup E, Frederiksen JL et al (2006) Magnetic resonance imaging at 3.0 Tesla detects more lesions in acute optic neuritis than at 1.5 Tesla. Invest Radiol 41:76–82

    PubMed  Article  Google Scholar 

  54. 54.

    Wattjes MP, Harzheim M, Kuhl CK et al (2006) Does high-field MR imaging have an influence on the classification of patients with clinically isolated syndromes according to current diagnostic MR imaging criteria for multiple sclerosis? AJNR Am J Neuroradiol 27:1794–1798

    PubMed  CAS  Google Scholar 

  55. 55.

    Wattjes MP, Harzheim M, Lutterbey GG et al (2008) Does high field MRI allow an earlier diagnosis of multiple sclerosis? J Neurol 255:1159–1163

    PubMed  Article  Google Scholar 

  56. 56.

    Gonen O, Gruber S, Li BS, Mlynarik V, Moser E (2001) Multivoxel 3D proton spectroscopy in the brain at 1.5 versus 3.0 T: signal-to-noise ratio and resolution comparison. AJNR Am J Neuroradiol 22:1727–1731

    PubMed  CAS  Google Scholar 

  57. 57.

    Ethofer T, Mader I, Seeger U et al (2003) Comparison of longitudinal metabolite relaxation times in different regions of the human brain at 1.5 and 3 Tesla. Magn Reson Med 50:1296–1301

    PubMed  Article  CAS  Google Scholar 

  58. 58.

    Benedetti B, Rigotti DJ, Liu S, Filippi M, Grossman RI, Gonen O (2007) Reproducibility of the whole-brain N-acetylaspartate level across institutions, MR scanners, and field strengths. AJNR Am J Neuroradiol 28:72–75

    PubMed  CAS  Google Scholar 

  59. 59.

    Inoue T, Ogasawara K, Kumabe T, Jokura H, Watanabe M, Ogawa A (2005) Minute glioma identified by 3.0 Tesla magnetic resonance spectroscopy—case report. Neurol Med Chir (Tokyo) 45:108–111

    Article  Google Scholar 

  60. 60.

    Krasnow B, Tamm L, Greicius MD et al (2003) Comparison of fMRI activation at 3 and 1.5 T during perceptual, cognitive, and affective processing. Neuroimage 18:813–826

    PubMed  Article  CAS  Google Scholar 

  61. 61.

    Fazel R, Krumholz HM, Wang Y et al (2009) Exposure to low-dose ionizing radiation from medical imaging procedures. N Engl J Med 361:849–857

    PubMed  Article  CAS  Google Scholar 

Download references


The SINAPSE Collaboration (Scottish Imaging Network, A Platform for Scientific Excellence, www.sinapse.ac.uk) is funded by the Scottish Funding Council and supports the salaries of many of the authors. The project did not receive any other specific funding.

Author information




Corresponding author

Correspondence to Joanna M. Wardlaw.

Electronic supplementary material

Below is the link to the electronic supplementary material.


(DOC 658 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wardlaw, J.M., Brindle, W., Casado, A.M. et al. A systematic review of the utility of 1.5 versus 3 Tesla magnetic resonance brain imaging in clinical practice and research. Eur Radiol 22, 2295–2303 (2012). https://doi.org/10.1007/s00330-012-2500-8

Download citation


  • Magnetic resonance imaging
  • Sensitivity and specificity
  • Brain
  • Neuroimaging
  • Systematic review