Skip to main content

Advertisement

Log in

Identification of mineral deposits in the brain on radiological images: a systematic review

  • Neuro
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objectives

MRI has allowed the study of mineral deposition in the brain throughout life and in disease. However, studies differ in their reporting of minerals on MRI for reasons that are unclear.

Methods

We conducted a systematic review from 1985 to July 2011 to determine the appearance of iron, calcium, copper and manganese on MRI and CT and their reliability. We assessed which imaging investigations provided the most consistent results compared with histology.

Results

Of 325 papers on minerals imaging, we included 46 studies that confirmed findings either directly or indirectly using a non-imaging method such as histology. Within this group, there was inconsistency in the identification of iron probably because of changes in its paramagnetic properties during its degradation. Iron appeared consistently hypointense only on T2*-weighted MRI, and along with calcified areas, hyperattenuated on CT. Appearance of copper, calcium and manganese, although consistently reported as hyperintense on T1-weighted MRI, was confirmed histologically in few studies. On T2-weighted imaging, calcified areas were always reported as hypointense, while the appearance of iron depended on the concentration, location and degradation stage.

Conclusions

More work is required to improve the reliability of imaging methods to detect and differentiate brain mineral deposition accurately.

Key Points

There is inconsistency in reporting the appearance of minerals on radiological images.

Only 46 studies confirmed mineral appearance using a non-imaging method.

Iron is the mineral more widely studied, consistently hypointense on T2*-weighted MRI.

T1-weighted MRI consistently reported copper, calcium and manganese hyperintense.

Calcium is consistently reported hypointense on T2-weighted MRI and hyperattenuating on CT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Aquino D, Bizzi A, Grisoli M et al (2009) Age-related iron deposition in the basal ganglia: quantitative analysis in healthy subjects. Radiology 252:165–172

    Article  PubMed  Google Scholar 

  2. Miyajima H, Takahashi Y, Kono S (2003) Aceruloplasminemia, an inherited disorder of iron metabolism. Biometals 16:205–213

    Article  PubMed  CAS  Google Scholar 

  3. O’Brien C, Sung JH, McGeachie RE, Lee MC (1990) Striatonigral degeneration: clinical, MRI and pathologic correlation. Neurology 40:710–711

    Article  PubMed  Google Scholar 

  4. Duckett S, Galle P, Escourolle R, Poirier J, Hauw JJ (1977) Presence of zinc, aluminium, magnesium in striopalledodentate (SPD) calcifications (Fahr’s disease): electron probe study. Acta Neuropathol 38:7–10

    Article  PubMed  CAS  Google Scholar 

  5. De Reuck J, Auger F, Cordonnier C et al (2011) Comparison of 7.0 T T2*-magnetic resonance imaging of cerebral bleeds in post-mortem brain sections of Alzheimer patients with their neuropathological correlates. Cerebrovasc Dis 31:511–517

    Article  PubMed  Google Scholar 

  6. Schenck JF, Zimmerman EA (2004) High-field magnetic resonance imaging of brain iron: birth of a biomarker? NMR Biomed 17:433–445

    Article  PubMed  CAS  Google Scholar 

  7. Schenck JF, Zimmerman EA, Li Z et al (2006) High-field magnetic resonance imaging of brain iron in Alzheimer disease. Top Magn Reson Imaging 17:41–50

    Article  PubMed  Google Scholar 

  8. Penke L, Valdés Hernández MC, Maniega SM et al (2012) Brain iron deposits are associated with general cognitive ability and cognitive aging. Neurobiol Aging 33:510–517

    Article  PubMed  CAS  Google Scholar 

  9. Duckett S (1991) Neuroradiology. In: Lea & Febiger (eds) The pathology of the aging human nervous system, 1st edn. Lea & Febiger, Philadelphia, pp 492

  10. Casanova MF, Araque JM (2003) Mineralisation of the basal ganglia: implications for neuropsychiatry, pathology and neuroimaging. Psychiatry Res 121:59–87

    Article  PubMed  Google Scholar 

  11. Crompton DE, Chinnary PF, Fey C et al (2002) Neuroferritinopathy: a window on the role of iron in neurodegeneration. Blood Cells Mol Dis 29:522–531

    Article  PubMed  CAS  Google Scholar 

  12. Haacke EM, Cheng NY, House MJ et al (2005) Imaging iron stores in the brain using magnetic resonance imaging. Magn Reson Imaging 23:1–25

    Article  PubMed  CAS  Google Scholar 

  13. Ropele S, de Graaf W, Khalil M et al (2011) MRI assessment of iron deposition in multiple sclerosis. J Magn Reson Imaging 34:13–21

    Article  PubMed  Google Scholar 

  14. Alafuzoff I (2008) Cerebral amyloid angiopathy, hemorrhages and superficial siderosis. Stroke 39:2699–2700

    Article  PubMed  Google Scholar 

  15. Akutsu H, Tsuboi K, Sakamoto N, Nose T, Honma S, Jikuya T (2004) Cerebral metastasis from angiosarcoma of the aortic wall: case report. Surg Neurol 61:68–71

    Article  PubMed  Google Scholar 

  16. Allkemper T, Reimer P, Schueirer G, Peters PE (1998) Study of susceptibility-induced artefacts in GRASE with different echo train length. Magn Reson Imaging 8:834–838

    CAS  Google Scholar 

  17. Barkhof F, Verrips A, Wesseling P et al (2000) Cerebrotendinous xanthomatosis: the spectrum of imaging findings and the correlation with neuropathologic findings. Radiology 217:869–876

    PubMed  CAS  Google Scholar 

  18. Bizzi A, Brooks RA, Brunetti A et al (1990) Role of iron and ferritin in MR imaging: a study on primates at different field strengths. Radiology 177:59–65

    PubMed  CAS  Google Scholar 

  19. Boddaert N, Le Quan Sang KH, Rötig A et al (2007) Selective iron chelation in Friedreich ataxia: biologic and clinical implications. Blood 110:401–408

    Article  PubMed  CAS  Google Scholar 

  20. Brass SD, Chen N, Mulkern RD, Bakshi R (2006) Magnetic resonance imaging of iron deposition in neurological disorders. Top Magn Reson Imaging 17:31–40

    Article  PubMed  Google Scholar 

  21. Brooks DJ, Luthert P, Gadian D, Marsden CD (1989) Does signal-attenuation on high-field MRI of the brain reflect regional cerebral iron deposition? Observations on the relationship between regional cerebral water proton T2 values and iron levels. J Neurol Neurosurg Psychiatry 52:108–111

    Article  PubMed  CAS  Google Scholar 

  22. Curtis AR, Fey C, Morris CM et al (2001) Mutation in the gene encoding ferritin light polypeptide causes dominant adult-onset basal ganglia disease. Nat Genet 28:350–354

    Article  PubMed  CAS  Google Scholar 

  23. El Tannir El Tayara N, Wolk A, Dhenain M, Delatour B (2007) Transverse relaxation time reflects brain amyloidosis in young APP/PS1 transgenic mice. Magn Reson Med 58:179–184

    Article  Google Scholar 

  24. El Tannir El Tayara N, Delatour B, Le Cudennec C, Guegan M, Volk A, Dhenain M (2006) Age-related evolution of amyloid burden, iron load, and MR relaxation times in a transgenic mouse model of Alzheimer’s disease. Neurobiol Dis 22:199–208

    Article  PubMed  CAS  Google Scholar 

  25. Fazekas F, Kleinert R, Roob G et al (1999) Histopathologic analysis of foci of signal loss on gradient-echo T2* weighted MR images in patients with spontaneous intracerebral hemorrhage: evidence of microangiopathy-related microbleeds. AJNR Am J Neuroradiol 20:637–642

    PubMed  CAS  Google Scholar 

  26. Feldman HH, Maia LF, Mackenzie IRA, Forster BB, Martzke J, Woolfenden A (2008) Superficial siderosis: a potential diagnostic marker of cerebral amyloid angiopathy in Alzheimer disease. Stroke 39:2894–2897

    Article  PubMed  Google Scholar 

  27. Gelman N, Gorell JM, Barker PB et al (1999) MR imaging of human brain at 3.0 T: preliminary report on transverse relaxation rates and relation to estimated iron content. Radiology 210:759–767

    PubMed  CAS  Google Scholar 

  28. Higano S, Takahashi S, Kurihara N et al (1997) Supratentorial primary intra-axial tumors in children. MR and CT evaluation. Acta Radiol 38:945–952

    PubMed  CAS  Google Scholar 

  29. Hocq A, Brouette N, Saussez S, Luhmer M, Gillis P, Goussin Y (2009) Variable-field relaxometry of iron-containing human tissues: a preliminary study. Contrast Media Mol Imaging 4:157–164

    Article  PubMed  CAS  Google Scholar 

  30. Jack CR, Wengenack TM, Reyes DA et al (2005) In vivo magnetic resonance microimaging of individual amyloid plaques in Alzheimer’s transgenic mice. J Neurosci 25:10041–10048

    Article  PubMed  CAS  Google Scholar 

  31. Janss AJ, Galetta SL, Freese A et al (1993) Superficial siderosis of the central nervous system: magnetic resonance imaging and pathological correlation. Case report. J Neurosurg 79:756–760

    Article  PubMed  CAS  Google Scholar 

  32. Kawanami T, Kato T, Tominaga M et al (1996) Hereditary ceruloplasmin deficiency: clinicopathological study of a patient. J Neurol Neurosurg Psychiatry 61:506–509

    Article  PubMed  CAS  Google Scholar 

  33. Ketonen L, Keiburtz K, Kazee AM, Tuite M (1996) Putaminal iron deposition in HIV infection. J NeuroAIDS 1:33–40

    PubMed  CAS  Google Scholar 

  34. Kruer MC, Hiken M, Gregory A et al (2011) Novel histopathological findings in molecularly-confirmed pantothenate kinase-associated neurodegeneration. Brain 134:947–958

    Article  PubMed  Google Scholar 

  35. Langkammer C, Krebs N, Goessler W et al (2010) Quantitative MR imaging of brain iron: a post-mortem validation study. Radiology 257:455–462

    Article  PubMed  Google Scholar 

  36. Maeda H, Sato M, Yoshikawa A et al (1997) Brain MR imaging in patients with hepatic cirrhosis: relationship between high intensity signal in basal ganglia on T1-weighted images and elemental concentrations in brain. Neuroradiology 39:546–550

    Article  PubMed  CAS  Google Scholar 

  37. Meadowcroft MD, Connor JR, Smith MB, Yang QX (2009) MRI and histological analysis of beta-amyloid plaques in both human Alzheimer’s disease and APP/PS1 transgenic mice. J Magn Reson Imaging 29:997–1007

    Article  PubMed  Google Scholar 

  38. Miyajima H, Kono S, Takahashi Y, Sugimoto M, Sakamoto M, Sakai N (2001) Cerebellar ataxia associated with heteroallelic ceruloplasmin gene mutation. Neurology 57:2205–2210

    Article  PubMed  CAS  Google Scholar 

  39. Morita H, Ikeda S, Yamamoto K et al (1995) Hereditary ceruloplasmin deficiency with hemosiderosis: a clinicopathological study of a Japanese family. Ann Neurol 37:646–656

    Article  PubMed  CAS  Google Scholar 

  40. Ogg RJ, Steen RG (1998) Age related changes in brain T1 are correlated with putative iron concentration. Magn Reson Med 40:749–753

    Article  PubMed  CAS  Google Scholar 

  41. Onyszchuk G, Levine SM, Brooks WM, Berman NE (2009) Post-acute pathological changes in the thalamus and internal capsule in aged mice following controlled cortical impact injury: a magnetic resonance imaging, iron histochemical, and glial immunohistochemical study. Neurosci Lett 452:204–208

    Article  PubMed  CAS  Google Scholar 

  42. Reimer P, Allkemper T, Schuierer G, Peters RE (1996) Brain imaging: reduced sensitivity of RARE-derived techniques to susceptibility effects. J Comput Assist Tomogr 20:201–205

    Article  PubMed  CAS  Google Scholar 

  43. Saleh A, Wiedermann D, Schroeter M, Jonkmanns C, Jander S, Hoehn M (2004) Central nervous system inflammatory response after cerebral infarction as detected by magnetic resonance imaging. NMR Biomed 17:163–169

    Article  PubMed  Google Scholar 

  44. Schrag M, McAuley G, Pomakian J et al (2009) Correlation of hypointensities in susceptibility weighted images to tissue histology in dementia patients with cerebral amyloid angiopathy: a post-mortem MRI study. Acta Neuropathol 119:291–302

    Article  Google Scholar 

  45. Schroeter M, Saleh A, Wiedermann D, Hoehn M, Jander S (2004) Histochemical detection of ultrasmall superparamagnetic iron oxide (USPIO) contrast medium uptake in experimental brain ischemia. Magn Reson Med 52:403–406

    Article  PubMed  Google Scholar 

  46. Takeuchi Y, Yoshikawa M, Tsujino T et al (2002) A case of aceruloplasminaemia: abnormal serum ceruloplasmin protein without ferroxidase activity. J Neurol Neurosurg Psychiatry 72:543–545

    PubMed  CAS  Google Scholar 

  47. Tuite PJ, Provias JP, Lang AE (1996) Atypical dopa responsive parkinsonism in a patient with megalencephaly, midbrain Lewy body disease and some pathological features of Hallervorden-Spatz disease. J Neurol Neurosurg Psychiatry 61:523–527

    Article  PubMed  CAS  Google Scholar 

  48. Vymazal J, Brooks RA, Baumgarner C et al (1996) The relation between brain iron and NMR relaxation times: an in vitro study. Magn Reson Med 35:56–61

    Article  PubMed  CAS  Google Scholar 

  49. Vymazal J, Righini A, Brooks RA et al (1999) T1 and T2 in the brain of healthy subjects, patients with Parkinson disease, and patients with multiple system atrophy: relation to iron content. Radiology 211:489–495

    PubMed  CAS  Google Scholar 

  50. Wu G, Xi G, Hua Y, Sagher O (2010) T2* magnetic resonance imaging sequences reflect brain tissue iron deposition following intracerebral haemorrhage. Transl Stroke Res 1:31–34

    Article  PubMed  CAS  Google Scholar 

  51. Sue CM, Crimmins DS, Soo YS et al (1998) Neuroradiological features of six kindreds with MELAS tRNA (Leu) A2343G point mutation: implications for pathogenesis. J Neurol Neurosurg Psychiatry 65:233–240

    Article  PubMed  CAS  Google Scholar 

  52. Chaki H, Furuta S, Matsuda A et al (2000) Magnetic resonance image and blood manganese concentration as indices for manganese content in the brain of rats. Biol Trace Elem Res 74:245–257

    Article  PubMed  CAS  Google Scholar 

  53. Fitsanakis VA, Zhang N, Anderson JG et al (2008) Measuring brain manganese and iron accumulation in rats following 14 weeks of low-dose manganese treatment using atomic absorption spectroscopy and magnetic resonance imaging. Toxicol Sci 103:116–124

    Article  PubMed  CAS  Google Scholar 

  54. Fitsanakis VA, Zhang N, Anderson JG et al (2011) Changes in dietary iron exacerbate regional brain manganese accumulation as determined by magnetic resonance imaging. Toxicol Sci 120:146–153

    Article  PubMed  CAS  Google Scholar 

  55. Finkelstein Y, Zhang N, Fitsanakis VA, Avison MJ, Gore JC, Aschner M (2008) Differential deposition of manganese in the rat brain following subchronic exposure to manganese: a T1-weighted magnetic resonance imaging study. Isr Med Assoc J 10:793–798

    PubMed  Google Scholar 

  56. Wang X, Qian J, He R et al (2006) Delayed changes in T1-weighted signal intensity in a rat model of 15-minute transient focal ischemia studied by magnetic resonance imaging/spectroscopy and synchrotron radiation X-ray fluorescence. Magn Reson Med 56:474–480

    Article  PubMed  CAS  Google Scholar 

  57. Hallgren B, Sourander P (1958) The effect of age on the non-haemin iron in the human brain. J Neurochem 3:41–51

    Article  PubMed  CAS  Google Scholar 

  58. Loeffer DA, Connor JR, Juneau PL et al (1995) Transferrin and iron in normal, Alzheimer’s disease and Parkinson’s disease brain regions. J Neurochem 65:710–724

    Article  Google Scholar 

Download references

Acknowledgements

L.C.M. and E.M.J.T. are funded by The University of Edinburgh College of Medicine Vacation Scholarship, M.C.V.H. is funded by Row Fogo Charitable Trust and J.M.W. is partially funded by the SINAPSE (Scottish Imaging Network A Platform for Scientific Excellence) collaboration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria del C. Valdés Hernández.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 125 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

del C. Valdés Hernández, M., Maconick, L.C., Tan, E.M.J. et al. Identification of mineral deposits in the brain on radiological images: a systematic review. Eur Radiol 22, 2371–2381 (2012). https://doi.org/10.1007/s00330-012-2494-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-012-2494-2

Keywords

Navigation