Skip to main content

Advertisement

Log in

High accuracy of mesoscopic epi-fluorescence tomography for non-invasive quantitative volume determination of fluorescent protein-expressing tumours in mice

  • Experimental
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objectives

To compare mesoscopic epi-fluorescence tomography (MEFT) and EPRI-illumination reflectance imaging (EPRI) for quantitative tumour size assessment in mice.

Methods

Tumour xenografts of green/red fluorescent protein (GFP/RFP)-expressing colon cancer cells were measured using MEFT, EPRI, ultrasound (US) and micro computed tomography (μCT) at day 14 post-injection (n = 6). Results from MEFT and EPRI were correlated with each other and with US and μCT (reference methods). Tumour volumes were measured ex vivo by GFP and RFP fluorescence imaging on cryoslices and compared with the in vivo measurements.

Results

High correlation and congruency were observed between MEFT, US and μCT (MEFT/US: GFP: r 2 = 0.96; RFP: r 2 = 0.97, both P < 0.05; MEFT/μCT: GFP: r 2 = 0.93; RFP: r 2 = 0.90; both P < 0.05). Additionally, in vivo MEFT data were highly correlated and congruent with ex vivo cryoslice imaging results (GFP: r 2 = 0.96; RFP: r 2 = 0.99; both P < 0.05). In comparison, EPRI significantly overestimated tumour volumes (P < 0.05), although there was a significant correlation with US and μCT (EPRI/US: GFP: r 2 = 0.95; RFP: r 2 = 0.94; both P < 0.05; EPRI/μCT GFP: r 2 = 0.86; RFP: r 2 = 0.86; both P < 0.05).

Conclusions

Fluorescence distribution reconstruction using MEFT affords highly accurate three-dimensional (3D) tumour volume data showing superior accuracy compared to EPRI. Thus, MEFT is a very suitable technique for quantitatively assessing fluorescence distribution in superficial tumours at high spatial resolution.

Key Points

• Mesoscopic epi-fluorescence tomography (MEFT) is an important new molecular imaging technique.

• MEFT allows accurate size determination of superficial tumours with high resolution.

• MEFT is a suitable technique for longitudinal assessment of tumour growth.

• MEFT allows 3D reconstruction and quantification of fluorescence distributions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Graham KC, Wirtzfeld LA, MacKenzie LT et al (2005) Three-dimensional high-frequency ultrasound imaging for longitudinal evaluation of liver metastases in preclinical models. Cancer Res 65:5231–5237

    Article  PubMed  CAS  Google Scholar 

  2. Wessels JT, Busse AC, Mahrt J, Dullin C, Grabbe E, Mueller GA (2007) In vivo imaging in experimental preclinical tumor research–a review. Cytometry 71:542–549

    Article  PubMed  CAS  Google Scholar 

  3. Weissleder R, Pittet MJ (2008) Imaging in the era of molecular oncology. Nature 452:580–589

    Article  PubMed  CAS  Google Scholar 

  4. Hoffman RM (2005) The multiple uses of fluorescent proteins to visualize cancer in vivo. Nat Rev Cancer 5:796–806

    Article  PubMed  CAS  Google Scholar 

  5. Abou-Elkacem L, Gremse F, Barth S, Hoffman RM, Kiessling F, Lederle W (2011) Comparison of μCT, MRI and optical reflectance imaging for assessing the growth of GFP/RFP-expressing tumors. Anticancer Res 31:2907–2913

    PubMed  Google Scholar 

  6. Ntziachristos V, Ripoll J, Wang LV, Weissleder R (2005) Looking and listening to light: the evolution of whole-body photonic imaging. Nat Biotech 23:313–320

    Article  CAS  Google Scholar 

  7. Björn S, Ntziachristos V, Schulz R (2010) Mesoscopic epifluorescence tomography: reconstruction of superficial and deep fluorescence in highly-scattering media. Opt Express 18:8422–8429

    Article  PubMed  Google Scholar 

  8. Björn S, Englmeier KH, Ntziachristos V, Schulz R (2011) Reconstruction of fluorescence distribution hidden in biological tissue using mesoscopic epifluorescence tomography. J Biomed Opt 16:046005

    Article  PubMed  Google Scholar 

  9. Jiang P, Yamauchi K, Yang M et al (2006) Tumor cells genetically labeled with GFP in the nucleus and RFP in the cytoplasm for imaging cellular dynamics. Cell Cycle 5:1198–1201

    Article  PubMed  CAS  Google Scholar 

  10. Yamamoto N, Jiang P, Yang M et al (2004) Cellular dynamics visualized in live cells in vitro and in vivo by differential dual-color nuclear-cytoplasmic fluorescent-protein expression. Cancer Res 64:4251–4256

    Article  PubMed  CAS  Google Scholar 

  11. Hoffman RM, Yang M (2006) Subcellular imaging in the live mouse. Nat Protoc 1:775–782

    Article  PubMed  CAS  Google Scholar 

  12. Cheung AMY, Brown AS, Hastie LA et al (2005) Three-dimensional ultrasound biomicroscopy for xenograft growth analysis. Ultrasound Med Biol 31:865–870

    Article  PubMed  Google Scholar 

  13. Sarantopoulos A, Themelis G, Ntziachristos V (2010) Imaging the bio-distribution of fluorescent probes using multispectral epi-illumination cryoslicing imaging. Mol Imaging Biol 13:874–885

    Article  Google Scholar 

  14. Ntziachristos V (2010) Going deeper than microscopy: the optical imaging frontier in biology. Nat Methods 7:603–614

    Article  CAS  Google Scholar 

  15. Vinegoni C, Pitsouli C, Razansky D, Perrimon N, Ntziachristos V (2007) In vivo imaging of Drosophila melanogaster pupae with mesoscopic fluorescence tomography. Nat Methods 5:45–47

    Article  PubMed  Google Scholar 

  16. Weissleder R, Ntziachristos V (2003) Shedding light onto live molecular targets. Nat Med 9:123–128

    Article  PubMed  CAS  Google Scholar 

  17. Crane LMA, Themelis G, Pleijhuis RG et al (2011) Intraoperative multispectral fluorescence imaging for the detection of the sentinel lymph node in cervical cancer: a novel concept. Mol Imaging Biol 13:1043–1049

    Article  PubMed  Google Scholar 

  18. van Dam GM, Themelis G, Crane LMA et al (2011) Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-α targeting: first in-human results. Nat Med 17:1315–1319

    Article  PubMed  Google Scholar 

  19. Katz MH, Takimoto S, Spivack D, Moossa AR, Hoffman RM, Bouvet M (2003) A novel red fluorescent protein orthotopic pancreatic cancer model for the preclinical evaluation of chemotherapeutics. J Surg Res 113:151–160

    Article  PubMed  CAS  Google Scholar 

  20. Deliolanis NC, Wurdinger T, Pike L et al (2011) In vivo tomographic imaging of red-shifted fluorescent proteins. Biomed Opt Express 2:887–900

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Deutsche Forschungsgemeinschaft (KI 1072/2-1) and by High Tech NRW (ForSaTum).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fabian Kiessling or Wiltrud Lederle.

Additional information

Lotfi Abou-Elkacem and Saskia Björn contributed equally to this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abou-Elkacem, L., Björn, S., Doleschel, D. et al. High accuracy of mesoscopic epi-fluorescence tomography for non-invasive quantitative volume determination of fluorescent protein-expressing tumours in mice. Eur Radiol 22, 1955–1962 (2012). https://doi.org/10.1007/s00330-012-2462-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-012-2462-x

Keywords

Navigation