European Radiology

, Volume 22, Issue 7, pp 1451–1464 | Cite as

Imaging vascular function for early stage clinical trials using dynamic contrast-enhanced magnetic resonance imaging

  • M. O. LeachEmail author
  • B. Morgan
  • P. S. Tofts
  • D. L. Buckley
  • W. Huang
  • M. A. Horsfield
  • T. L. Chenevert
  • D. J. Collins
  • A. Jackson
  • D. Lomas
  • B. Whitcher
  • L. Clarke
  • R. Plummer
  • I. Judson
  • R. Jones
  • R. Alonzi
  • T. Brunner
  • D. M. Koh
  • P. Murphy
  • J. C. Waterton
  • G. Parker
  • M. J. Graves
  • T. W. J. Scheenen
  • T. W. Redpath
  • M. Orton
  • G. Karczmar
  • H. Huisman
  • J. Barentsz
  • A. Padhani
  • on behalf of the Experimental Cancer Medicine Centres Imaging Network Steering Committee
Magnetic Resonance


Many therapeutic approaches to cancer affect the tumour vasculature, either indirectly or as a direct target. Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) has become an important means of investigating this action, both pre-clinically and in early stage clinical trials. For such trials, it is essential that the measurement process (i.e. image acquisition and analysis) can be performed effectively and with consistency among contributing centres. As the technique continues to develop in order to provide potential improvements in sensitivity and physiological relevance, there is considerable scope for between-centre variation in techniques. A workshop was convened by the Imaging Committee of the Experimental Cancer Medicine Centres (ECMC) to review the current status of DCE-MRI and to provide recommendations on how the technique can best be used for early stage trials. This review and the consequent recommendations are summarised here.

Key Points

Tumour vascular function is key to tumour development and treatment

Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) can assess tumour vascular function

Thus DCE-MRI with pharmacokinetic models can assess novel treatments

Many recent developments are advancing the accuracy of and information from DCE-MRI

Establishing common methodology across multiple centres is challenging and requires accepted guidelines


Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) Tumour vasculature Angiogenesis Cancer Early phase trials 



We are grateful for comments received from Y. Hwang, E. Jackson, R. Sims, J. Evelhoch, M. Silva, W. Vennart, M. Clemence, B. Kiefer, and M. Rosen. We would also like to acknowledge the Experimental Cancer Medicine Centre (ECMC) Imaging Steering Committee (M. Leach, E. Aboagye, F. Gilbert, V. Goh, A. Jackson, D. Lomas, B. Morgan, and R. Plummer) and the ECMC Secretariat for supporting the workshop on tumour vascularity in May 2010 and coordinating activities, and all of the speakers and delegates who contributed to the meeting. The Experimental Cancer Medicine Centre Initiative is jointly funded by Cancer Research UK, the National Institute for Health Research in England, and the Departments of Health for Scotland, Wales, and Northern Ireland.

Conflict of Interest

M.O. Leach and D.J. Collins: Software developed at the Institute of Cancer Research and using some of the approaches referred to in this paper may be commercialised by the Institute of Cancer Research and commercialised or licensed to users. In those cases employees may receive some income under the Institute's rewards to inventors scheme.

B. Whitcher: Employed by GlaxoSmithKline (pharmaceutical industry) at the time of the ECMC workshop and until 6 May 2011. Now employed by Mango Solutions (software industry) and provides medical image analysis services to the pharmaceutical industry.

G. Parker: Received research grant income and consultancy income from pharmaceutical companies for work in DCE-MRI associated with clinical trials. Specifically, within the last year received research grant income from AstraZeneca, Pfiizer, GSK, Roche, Genentech, Bayer, and Merck-Serono. Received consultancy income from Bayer. Also a shareholder and director of Bioxydyn limited, a specialist imaging company with an interest in DCE-MRI.

G. Karczmar: Research has been supported by Philips Medical Systems and Bayer.

A. Padhani: Consultancy work for IXICO and Roche. DCE trial work with Roche and Oxigene.


  1. 1.
    Jackson E, Ashton E, Evelhoch JL et al (2010) Multivendor, multisite DCE-MRI phantom validation study. In: Proceedings of the 95th Scientific Assembly and Annual Meeting of the Radiological Society of North America (RSNA '10); December 2009; Chicago, IL, USAGoogle Scholar
  2. 2.
    Meyer CR, Armato SG, Fenimore CP et al (2009) Quantitative imaging to assess tumor response to therapy: common themes of measurement, truth data, and error sources. Transl Oncol 2:198–210PubMedGoogle Scholar
  3. 3.
    Leach MO, Brindle KM, Evelhoch JL et al (2003) Assessment of antiangiogenic and antivascular therapeutics using MRI: recommendations for appropriate methodology for clinical trials. Br J Radiol 76:S87–S91PubMedCrossRefGoogle Scholar
  4. 4.
    Leach MO, Brindle KM, Evelhoch JL et al (2005) The assessment of antiangiogenic and antivascular therapies in early-stage clinical trials using magnetic resonance imaging: issues and recommendations. Br J Cancer 92:1599–1610PubMedCrossRefGoogle Scholar
  5. 5.
    Evelhoch J, Garwood N, Vigneron D et al (2005) Expanding the use of magnetic resonance in the assessment of tumor response to therapy: Workshop report. Cancer Research 65:7041–7044PubMedCrossRefGoogle Scholar
  6. 6.
    Evelhoch JL (1999) Key factors in the acquisition of contrast kinetic data for oncology. J Magn Reson Imaging 10:254–259PubMedCrossRefGoogle Scholar
  7. 7.
    Taylor JS, Tofts PS, Port R et al (1999) MR imaging of tumor microcirculation: promise for the new millennium. J Magn Reson Imaging 10:903–907PubMedCrossRefGoogle Scholar
  8. 8.
    Tofts PS (1998) Standardisation and optimisation of magnetic resonance techniques for multicentre studies. J Neurol Neurosurg Psychiatry 64:S37–S43PubMedCrossRefGoogle Scholar
  9. 9.
    Tofts PS, Brix G, Buckley DL et al (1999) Estimating kinetic parameters from dynamic contrast-enhanced T(1)-weighted MRI of a diffusible tracer: standardized quantities and symbols. J Magn Reson Imaging 10:223–232PubMedCrossRefGoogle Scholar
  10. 10.
    Jia G, Heverhagen JT, Polzer H et al (2006) Dynamic contrast enhanced magnetic resonance imaging as a biological marker to noninvasively assess the effect of finasteride on prostatic suburethral microcirculation. J Urol 176:2299–2304PubMedCrossRefGoogle Scholar
  11. 11.
    McKeage M, Fong P, Jeffery M et al (2006) 5,6-Dimethylxanthenone-4-acetic acid in the treatment of refractory tumours: a phase I safety study of a vascular disrupting agent. Clin Cancer Res 12:1776–1784PubMedCrossRefGoogle Scholar
  12. 12.
    Head M, Jameson MB (2010) The development of the tumor vascular-disrupting agent ASA404 (vadimezan, DMXAA): current status and future opportunities. Expert Opin Investig Drugs 19:295–304PubMedCrossRefGoogle Scholar
  13. 13.
    Eskens FALM, Steeghs N, Verweij J et al (2009) Phase I Dose Escalation Study of Telatinib, a Tyrosine Kinase Inhibitor of Vascular Endothelial Growth Factor Receptor 2 and 3, Platelet-Derived Growth Factor Receptor beta, and c-Kit, in Patients With Advanced or Metastatic Solid Tumours. J Clin Oncol 27:4169–4176PubMedCrossRefGoogle Scholar
  14. 14.
    LoRusso PM, Gadgeel SM, Wozniak A et al (2008) Phase I clinical evaluation of ZD6126, a novel vascular-targeting agent, in patients with solid tumours. Invest New Drugs 26:159–167PubMedCrossRefGoogle Scholar
  15. 15.
    Drevs J, Siegert P, Medinger M et al (2007) Phase I clinical study of AZD2171, an oral vascular endothelial growth factor signalling inhibitor, in patients with advanced solid tumours. J Clin Oncol 25:3045–3054PubMedCrossRefGoogle Scholar
  16. 16.
    Leach MO (2009) Breast cancer screening in women at high risk using MRI. NMR Biomed 22:17–27PubMedCrossRefGoogle Scholar
  17. 17.
    Miyazaki K, Orton MR, Davidson RI et al (2011) The feasibility of dynamic contrast-enhanced magnetic resonance imaging to monitor and predict peptide receptor radionuclide therapy outcome in patients with neuroendocrine tumour liver metastases. Radiology 17:2012. doi: 10.1148/radiol.12110770, Published online before print FebruaryGoogle Scholar
  18. 18.
    Dowell NG, Tofts PS (2007) Fast, accurate, and precise mapping of the RF field in vivo using the 180 degrees signal null. Magn Reson Med 58:622–630PubMedCrossRefGoogle Scholar
  19. 19.
    Yarnykh VL (2007) Actual flip-angle imaging in the pulsed steady state: a method for rapid three-dimensional mapping of the transmitted radiofrequency field. Magn Reson Med 57:192–200PubMedCrossRefGoogle Scholar
  20. 20.
    Cunningham CH, Pauly JM, Nayak KS (2006) Saturated double-angle method for rapid B1+ mapping. Magn Reson Med 55:1326–1333PubMedCrossRefGoogle Scholar
  21. 21.
    Preibisch C, Deichmann R (2009) Influence of RF spoiling on the stability and accuracy of T1 mapping based on spoiled FLASH with varying flip angles. Magn Reson Med 61:125–135PubMedCrossRefGoogle Scholar
  22. 22.
    Roberts C, Little R, Watson Y, Zhao S, Buckley DL, Parker GJ (2011) The effect of blood inflow and B(1)-field inhomogeneity on measurement of the arterial input function in axial 3D spoiled gradient echo dynamic contrast-enhanced MRI. Magn Reson Med 65:108–119PubMedCrossRefGoogle Scholar
  23. 23.
    Buckley DL, Parker GJM (2004) T1 estimation using variable flip angle spoiled gradient echo for dynamic contrast-enhanced MRI: Arterial input measurement improves accuracy in the presence of B1 error. Proceedings of the 12th Annual Scientific Meeting of the ISMRM, Kyoto, pp 1968Google Scholar
  24. 24.
    Larkman DJ, Nunes RG (2007) Parallel magnetic resonance imaging. Phys Med Biol 52:R15–R55PubMedCrossRefGoogle Scholar
  25. 25.
    Firbank MJ, Harrison RM, Williams ED, Coulthard A (2000) Quality assurance for MRI: practical experience. Br J Radiol 73:376–383PubMedGoogle Scholar
  26. 26.
    Ihalainen T, Sipila O, Savolainen S (2004) MRI quality control: six imagers studied using eleven unified image quality parameters. Eur Radiol 14:1859–1865PubMedCrossRefGoogle Scholar
  27. 27.
    Lerski RA, de Certaines JD (1993) Performance assessment and quality control in MRI by Eurospin test objects and protocols. Magn Reson Imaging 11:817–833PubMedCrossRefGoogle Scholar
  28. 28.
    Tofts P (2003) QA: Quality assurance, accuracy, precision and phantoms. In: Tofts P (ed) Quantitative MRI of the brain: measuring changes caused by disease. Wiley, Chichester, pp 55–81Google Scholar
  29. 29.
    Lerski RA (1993) Trial of modifications to Eurospin MRI test objects. Magn Reson Imaging 11:835–839PubMedCrossRefGoogle Scholar
  30. 30.
    Jackson EF, Barboriak DP, Bidaut LM, Meyer CR (2009) Magnetic resonance assessment of response to therapy: tumor change measurement, truth data and error sources. Transl Oncol 2:211–215PubMedGoogle Scholar
  31. 31.
    Brookes JA, Redpath TW, Gilbert FJ, Murray AD, Staff RT (1999) Accuracy of T1 measurement in dynamic contrast-enhanced breast MRI using two- and three-dimensional variable flip angle fast low-angle shot. J Magn Reson Imaging 9:163–171PubMedCrossRefGoogle Scholar
  32. 32.
    Preibisch C, Deichmann R (2009) T1 mapping using spoiled FLASH-EPI hybrid sequences and varying flip angles. Magn Reson Med 62:240–246PubMedCrossRefGoogle Scholar
  33. 33.
    Wang J, Qiu M, Kim H, Constable RT (2006) T1 measurements incorporating flip angle calibration and correction in vivo. J Magn Reson 182:283–292PubMedCrossRefGoogle Scholar
  34. 34.
    Li KL, Zhu XP, Waterton J, Jackson A (2000) Improved 3D quantitative mapping of blood volume and endothelial permeability in brain tumours. J Magn Reson Imaging 12:347–357PubMedCrossRefGoogle Scholar
  35. 35.
    Parker GJ, Roberts C, Macdonald A et al (2006) Experimentally-derived functional form for a population-averaged high-temporal-resolution arterial input function for dynamic contrast-enhanced MRI. Magn Reson Med 56:993–1000PubMedCrossRefGoogle Scholar
  36. 36.
    Bellin MF, Van Der Molen AJ (2008) Extracellular gadolinium-based contrast media: an overview. Eur J Radiol 66:160–167PubMedCrossRefGoogle Scholar
  37. 37.
    Prince MR, Zhang HL, Roditi GH, Leiner T, Kucharczyk W (2009) Risk factors for NSF: a literature review. J Magn Reson Imaging 30:1298–1308PubMedCrossRefGoogle Scholar
  38. 38.
    Thomsen HS (2005) How to avoid CIN: guidelines from the European Society of Urogenital Radiology. Nephrol Dial Transplant 20:i18–22PubMedCrossRefGoogle Scholar
  39. 39.
    Sam AD 2nd, Morasch MD, Collins J, Song G, Chen R, Pereles FS (2003) Safety of gadolinium contrast angiography in patients with chronic renal insufficiency. J Vasc Surg 38:313–318PubMedCrossRefGoogle Scholar
  40. 40.
    FDA (2011) Drug Safety Information for Patients and Providers. Accessed 15th February 2012 16.51GMT
  41. 41.
    EMEA (2011) Information on NSF Accessed 15th February 2012 16.53GMT
  42. 42.
    Tofts PS, Kermode AG (1991) Measurement of the blood–brain barrier permeability and leakage space using dynamic MR imaging. 1. Fundamental concepts. Magn Reson. Med 17:357–367Google Scholar
  43. 43.
    Schabel MC, Parker DL (2008) Uncertainty and bias in contrast concentration measurements using spoiled gradient echo pulse sequences. Phys Med Biol 53:2345–2373PubMedCrossRefGoogle Scholar
  44. 44.
    Morgan B, Utting JF, Higginson A, Thomas AL, Steward WP, Horsfield MA (2006) A simple, reproducible method for monitoring the treatment of tumours using dynamic contrast-enhanced MR imaging. Br J Cancer 94:1420–1427PubMedCrossRefGoogle Scholar
  45. 45.
    Galbraith SM, Lodge MA, Taylor NJ et al (2002) Reproducibility of dynamic contrast-enhanced MRI in human muscle and tumours: comparison of quantitative and semi-quantitative analysis. NMR Biomed 15:132–142PubMedCrossRefGoogle Scholar
  46. 46.
    Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1:307–310PubMedCrossRefGoogle Scholar
  47. 47.
    Orton MR, Miyazaki K, Koh DM et al (2009) Optimizing functional parameter accuracy for breath-hold DCE-MRI of liver tumours. Phys Med Biol 54:2197–2215PubMedCrossRefGoogle Scholar
  48. 48.
    Henderson E, Rutt BK, Lee TY (1998) Temporal sampling requirements for the tracer kinetics modeling of breast disease. Magn Reson Imaging 16:1057–1073PubMedCrossRefGoogle Scholar
  49. 49.
    Melbourne A, Atkinson D, Hawkes D (2008) Influence of organ motion and contrast enhancement on image registration. Med Image Comput Comput Assist Interv 11:948–955PubMedGoogle Scholar
  50. 50.
    Melbourne A, Atkinson D, White MJ, Collins D, Leach M, Hawkes D (2007) Registration of dynamic contrast-enhanced MRI using a progressive principal component registration (PPCR). Phys Med Biol 52:5147–5156PubMedCrossRefGoogle Scholar
  51. 51.
    Buonaccorsi GA, O'Connor JP, Caunce A et al (2007) Tracer kinetic model-driven registration for dynamic contrast-enhanced MRI time-series data. Magn Reson Med 58:1010–1019PubMedCrossRefGoogle Scholar
  52. 52.
    Sourbron S, Ingrisch M, Siefert A, Reiser M, Herrmann K (2009) Quantification of cerebral blood flow, cerebral blood volume, and blood–brain-barrier leakage with DCE-MRI. Magn Reson Med 62:205–217PubMedCrossRefGoogle Scholar
  53. 53.
    Buckley DL, Shurrab AE, Cheung CM, Jones AP, Mamtora H, Kalra PA (2006) Measurement of single kidney function using dynamic contrast-enhanced MRI: comparison of two models in human subjects. J Magn Reson Imaging 24:1117–1123PubMedCrossRefGoogle Scholar
  54. 54.
    Makkat S, Luypaert R, Sourbron S, Stadnik T, De Mey J (2010) Assessment of tumor blood flow in breast tumours with T1-dynamic contrast-enhanced MR imaging: impact of dose reduction and the use of a prebolus technique on diagnostic efficacy. J Magn Reson Imaging 31:556–561PubMedCrossRefGoogle Scholar
  55. 55.
    Makkat S, Luypaert R, Sourbron S, Stadnik T, De Mey J (2007) Quantification of perfusion and permeability in breast tumours with a deconvolution-based analysis of second-bolus T1-DCE data. J Magn Reson Imaging 25:1159–1167PubMedCrossRefGoogle Scholar
  56. 56.
    Risse F, Semmler W, Kauczor HU, Fink C (2006) Dual-bolus approach to quantitative measurement of pulmonary perfusion by contrast-enhanced MRI. J Magn Reson Imaging 24:1284–1290PubMedCrossRefGoogle Scholar
  57. 57.
    Christian TF, Rettmann DW, Aletras AH et al (2004) Absolute myocardial perfusion in canines measured by using dual-bolus first-pass MR imaging. Radiology 232:677–684PubMedCrossRefGoogle Scholar
  58. 58.
    Kershaw LE, Buckley DL (2006) Precision in measurements of perfusion and microvascular permeability with T1-weighted dynamic contrast-enhanced MRI. Magn Reson Med 56:986–992PubMedCrossRefGoogle Scholar
  59. 59.
    Kovar DA, Lewis M, Karczmar GS (1998) A new method for imaging perfusion and contrast extraction fraction: input functions derived from reference tissues. J Magn Reson Imaging 8:1126–1134PubMedCrossRefGoogle Scholar
  60. 60.
    Yang C, Karczmar GS, Medved M, Stadler WM (2004) Estimating the arterial input function using two reference tissues in dynamic contrast-enhanced MRI studies: fundamental concepts and simulations. Magn Reson Med 52:1110–1117PubMedCrossRefGoogle Scholar
  61. 61.
    Yankeelov TE, Luci JJ, Lepage M et al (2005) Quantitative pharmacokinetic analysis of DCE-MRI data without an arterial input function: a reference region model. Magn Reson Imaging 23:519–529PubMedCrossRefGoogle Scholar
  62. 62.
    Yang C, Karczmar GS, Medved M, Stadler WM (2007) Multiple reference tissue method for contrast agent arterial input function estimation. Magn Reson Med 58:1266–1275PubMedCrossRefGoogle Scholar
  63. 63.
    Fan X, Haney CR, Mustafi D et al (2010) Use of a reference tissue and blood vessel to measure the arterial input function in DCEMRI. Magn Reson Med 64:1821–1826PubMedCrossRefGoogle Scholar
  64. 64.
    Fluckiger JU, Schabel MC, Dibella EV (2009) Model-based blind estimation of kinetic parameters in dynamic contrast enhanced (DCE)-MRI. Magn Reson Med 62:1477–1486PubMedCrossRefGoogle Scholar
  65. 65.
    Schabel MC, DiBella EV, Jensen RL, Salzman KL (2010) A model-constrained Monte Carlo method for blind arterial input function estimation in dynamic contrast-enhanced MRI: II. In vivo results. Phys Med Biol 55:4807–4823PubMedCrossRefGoogle Scholar
  66. 66.
    Fritz-Hansen T, Rostrup E, Larsson HB, Sondergaard L, Ring P, Henriksen O (1996) Measurement of the arterial concentration of Gd-DTPA using MRI: a step toward quantitative perfusion imaging. Magn Reson Med 36:225–231PubMedCrossRefGoogle Scholar
  67. 67.
    Weinmann HJ, Laniado M, Mutzel W (1984) Pharmacokinetics of GdDTPA/dimeglumine after intravenous injection into healthy volunteers. Physiol Chem Phys Med NMR 16:167–172PubMedGoogle Scholar
  68. 68.
    Horsfield MA, Thornton JS, Gill A, Jager HR, Priest AN, Morgan B (2009) A functional form for injected MRI Gd-chelate contrast agent concentration incorporating recirculation, extravasation and excretion. Phys Med Biol 54:2933–2949PubMedCrossRefGoogle Scholar
  69. 69.
    Orton MR, d’Arcy JA, Walker-Samuel S et al (2008) Computationally efficient vascular input function models for quantitative kinetic modelling using DCE-MRI. Phys Med Biol 53:1225–1239PubMedCrossRefGoogle Scholar
  70. 70.
    Rose CJ, Mills SJ, O'Connor JP et al (2009) Quantifying spatial heterogeneity in dynamic contrast-enhanced MRI parameter maps. Magn Reson Med 62:488–499PubMedCrossRefGoogle Scholar
  71. 71.
    Tofts PS, Steens SC, Cercignani M et al (2006) Sources of variation in multi-centre brain MTR histogram studies: body-coil transmission eliminates inter-centre differences. MAGMA 19:209–222PubMedCrossRefGoogle Scholar
  72. 72.
    Balvay D, Frouin F, Calmon G et al (2005) New criteria for assessing fit quality in dynamic contrast-enhanced T1-weighted MRI for perfusion and permeability imaging. Magn Reson Med 54:868–877PubMedCrossRefGoogle Scholar
  73. 73.
    Jeukens CR, van den Berg CA, Donker R et al (2006) Feasibility and measurement precision of 3D quantitative blood flow mapping of the prostate using dynamic contrast-enhanced multi-slice CT. Phys Med Biol 51:4329–4343PubMedCrossRefGoogle Scholar
  74. 74.
    NCI (2004) Imaging Guidelines for Clinical Trials. Accessed 15th February 2012 16.57GMT
  75. 75.
    Sourbron SP, Buckley DL (2011) On the scope and interpretation of the Tofts models for DCE-MRI. Magn Reson Med 66:735–745PubMedCrossRefGoogle Scholar
  76. 76.
    Donaldson SB, West CM, Davidson SE et al (2010) A comparison of tracer kinetic models for T1-weighted dynamic contrast-enhanced MRI: application in carcinoma of the cervix. Magn Reson Med 63:691–700PubMedCrossRefGoogle Scholar
  77. 77.
    Brix G, Kiessling F, Lucht R et al (2004) Microcirculation and microvasculature in breast tumours: pharmacokinetic analysis of dynamic MR image series. Magn Reson Med 52:420–429PubMedCrossRefGoogle Scholar
  78. 78.
    Johnson JA, Wilson TA (1966) A model for capillary exchange. Am J Physiol 210:1299–1303PubMedGoogle Scholar
  79. 79.
    St Lawrence KS, Lee TY (1998) An adiabatic approximation to the tissue homogeneity model for water exchange in the brain: II. Experimental validation. J Cereb Blood Flow Metab 18:1378–1385PubMedCrossRefGoogle Scholar
  80. 80.
    St Lawrence KS, Lee TY (1998) An adiabatic approximation to the tissue homogeneity model for water exchange in the brain: I. Theoretical derivation. J Cereb Blood Flow Metab 18:1365–1377PubMedCrossRefGoogle Scholar
  81. 81.
    Koh TS, Cheong LH, Hou Z, Soh YC (2003) A physiologic model of capillary-tissue exchange for dynamic contrast-enhanced imaging of tumor microcirculation. IEEE Trans Biomed Eng 50:159–167PubMedCrossRefGoogle Scholar
  82. 82.
    Huang W, Li X, Morris EA et al (2008) The magnetic resonance shutter speed discriminates vascular properties of malignant and benign breast tumours in vivo. Proc Natl Acad Sci USA 105:17943–17948PubMedCrossRefGoogle Scholar
  83. 83.
    Li X, Huang W, Morris EA et al (2008) Dynamic NMR effects in breast cancer dynamic-contrast-enhanced MRI. Proc Natl Acad Sci USA 105:17937–17942PubMedCrossRefGoogle Scholar
  84. 84.
    Huang W, Tudorica LA, Li X et al (2011) Discrimination of benign and malignant breast lesions by using shutter-speed dynamic contrast-enhanced MR imaging. Radiology 261:394–403PubMedCrossRefGoogle Scholar
  85. 85.
    Ewing JR, Brown SL, Lu M et al (2006) Model selection in magnetic resonance imaging measurements of vascular permeability: Gadomer in a 9 L model of rat cerebral tumor. J Cereb Blood Flow Metab 26:310–320PubMedCrossRefGoogle Scholar
  86. 86.
    Naish JH, Kershaw LE, Buckley DL, Jackson A, Waterton JC, Parker GJ (2009) Modeling of contrast agent kinetics in the lung using T1-weighted dynamic contrast-enhanced MRI. Magn Reson Med 61:1507–1514PubMedCrossRefGoogle Scholar
  87. 87.
    Brix G, Zwick S, Kiessling F, Griebel J (2009) Pharmacokinetic analysis of tissue microcirculation using nested models: multimodel inference and parameter identifiability. Med Phys 36:2923–2933PubMedCrossRefGoogle Scholar
  88. 88.
    Buckley DL, Kershaw LE, Stanisz GJ (2008) Cellular-interstitial water exchange and its effect on the determination of contrast agent concentration in vivo: dynamic contrast-enhanced MRI of human internal obturator muscle. Magn Reson Med 60:1011–1019PubMedCrossRefGoogle Scholar
  89. 89.
    Li X, Springer CS Jr, Jerosch-Herold M (2009) First-pass dynamic contrast-enhanced MRI with extravasating contrast reagent: evidence for human myocardial capillary recruitment in adenosine-induced hyperemia. NMR Biomed 22:148–157PubMedCrossRefGoogle Scholar
  90. 90.
    Akaike H (1974) New Look at Statistical-Model Identification. IEEE T Automat Contr Ac 19:716–723CrossRefGoogle Scholar
  91. 91.
    O'Connor JPB, Jayson GC, Jackson A et al (2007) Enhancing fraction predicts clinical outcome following first-line chemotherapy in patients with epithelial ovarian carcinoma. Clin Cancer Res 13:6130–6135PubMedCrossRefGoogle Scholar
  92. 92.
    Jayson GC, Parker GJ, Mullamitha S et al (2005) Blockade of platelet-derived growth factor receptor-beta by CDP860, a humanized, PEGylated di-Fab', leads to fluid accumulation and is associated with increased tumor vascularized volume. J Clin Oncol 23:973–981PubMedCrossRefGoogle Scholar
  93. 93.
    Mills SJ, Soh C, O'Connor JP et al (2009) Tumour enhancing fraction (EnF) in glioma: relationship to tumour grade. Eur Radiol 19:1489–1498PubMedCrossRefGoogle Scholar
  94. 94.
    Poldrack RA, Fletcher PC, Henson RN, Worsley KJ, Brett M, Nichols TE (2008) Guidelines for reporting an fMRI study. Neuroimage 40:409–414PubMedCrossRefGoogle Scholar
  95. 95.
    Schulz KF, Altman DG, Moher D (2010) CONSORT 2010 statement: updated guidelines for reporting parallel group randomised trials. BMJ 340:c332PubMedCrossRefGoogle Scholar
  96. 96.
    Moher D, Hopewell S, Schulz KF et al (2010) CONSORT 2010 explanation and elaboration: updated guidelines for reporting parallel group randomised trials. BMJ 340:c869PubMedCrossRefGoogle Scholar
  97. 97.
    Gaehtgens P (1980) Flow of blood through narrow capillaries: rheological mechanisms determining capillary hematocrit and apparent viscosity. Biorheology 17:183–189PubMedGoogle Scholar
  98. 98.
    Brix G, Griebel J, Kiessling F, Wenz F (2010) Tracer kinetic modelling of tumour angiogenesis based on dynamic contrast-enhanced CT and MRI measurements. Eur J Nucl Med Mol Imaging 37:S30–S51PubMedCrossRefGoogle Scholar

Copyright information

© European Society of Radiology 2012

Authors and Affiliations

  • M. O. Leach
    • 1
    Email author
  • B. Morgan
    • 2
  • P. S. Tofts
    • 3
  • D. L. Buckley
    • 4
  • W. Huang
    • 5
  • M. A. Horsfield
    • 6
  • T. L. Chenevert
    • 7
  • D. J. Collins
    • 8
  • A. Jackson
    • 9
  • D. Lomas
    • 10
  • B. Whitcher
    • 11
  • L. Clarke
    • 12
  • R. Plummer
    • 13
  • I. Judson
    • 14
  • R. Jones
    • 15
  • R. Alonzi
    • 16
  • T. Brunner
    • 17
  • D. M. Koh
    • 18
  • P. Murphy
    • 19
  • J. C. Waterton
    • 20
  • G. Parker
    • 21
  • M. J. Graves
    • 22
  • T. W. J. Scheenen
    • 23
  • T. W. Redpath
    • 24
  • M. Orton
    • 1
  • G. Karczmar
    • 25
  • H. Huisman
    • 26
  • J. Barentsz
    • 27
  • A. Padhani
    • 28
  • on behalf of the Experimental Cancer Medicine Centres Imaging Network Steering Committee
  1. 1.Cancer Research UK and EPSRC Cancer Imaging CentreInstitute of Cancer Research & Royal Marsden NHS Foundation TrustSuttonUK
  2. 2.College of Medicine, Biological Sciences & PsychologyUniversity of LeicesterLeicesterUK
  3. 3.Clinical Imaging Sciences CentreBrighton and Sussex Medical School, University of SussexSussexUK
  4. 4.Division of Medical PhysicsUniversity of LeedsLeedsUK
  5. 5.Advanced Imaging Research CentreOregon Health & Science UniversityPortlandUSA
  6. 6.Department of Cardiovascular SciencesMedical Physics Section, Leicester Royal InfirmaryLeicesterUK
  7. 7.University of Michigan Health SystemAnn ArborUSA
  8. 8.Cancer Research UK and EPSRC Cancer Imaging CentreRoyal Marsden Hospital NHS Foundation TrustSuttonUK
  9. 9.University of Manchester, Wolfson Molecular Imaging CentreWithingtonUK
  10. 10.Department of RadiologyUniversity of CambridgeCambridgeUK
  11. 11.Mango SolutionsUnit 2 Greenways Business ParkChippenhamUK
  12. 12.Imaging Technology Development BranchCancer Imaging ProgramRockvilleUSA
  13. 13.Medical Oncology, Northern Institute for Cancer ResearchUniversity of Newcastle Upon Tyne, The Medical SchoolNewcastle Upon TyneUK
  14. 14.Royal Marsden HospitalSuttonUK
  15. 15.Beatson West of Scotland Cancer CentreGlasgowUK
  16. 16.Mount Vernon Cancer CentreNorthwoodUK
  17. 17.Gray Institute for Radiation, Oncology & BiologyOxfordUK
  18. 18.Diagnostic RadiologyRoyal Marsden NHS Foundation TrustSuttonUK
  19. 19.Clinical ImagingGlaxoSmithKlineLondonUK
  20. 20.AstraZenecaPersonalised Healthcare & BiomarkersMacclesfieldUK
  21. 21.Biomedical Imaging InstituteUniversity of ManchesterManchesterUK
  22. 22.Cambridge University Hospitals NHS Foundation TrustCambridgeUK
  23. 23.Department of RadiologyRadbound University Nijmegen Medical CenterNijmegenThe Netherlands
  24. 24.Aberdeen Biomedical Imaging CentreUniversity of AberdeenForesterhillUK
  25. 25.Department of Radiology, Lynn S Florsheim MRIS LabUniversity of ChicagoChicagoUSA
  26. 26.Radbound University Medical CenterNijmegenThe Netherlands
  27. 27.Department of RadiologyRadbound University Medical CentreNijmegenThe Netherlands
  28. 28.Paul Strickland Scanner CentreMount Vernon Cancer CentreNorthwoodUK

Personalised recommendations