Advertisement

European Radiology

, Volume 22, Issue 7, pp 1519–1528 | Cite as

Correlations between diffusion-weighted imaging and breast cancer biomarkers

  • Laura MartincichEmail author
  • Veronica Deantoni
  • Ilaria Bertotto
  • Stefania Redana
  • Franziska Kubatzki
  • Ivana Sarotto
  • Valentina Rossi
  • Michele Liotti
  • Riccardo Ponzone
  • Massimo Aglietta
  • Daniele Regge
  • Filippo Montemurro
Breast

Abstract

Objective

We evaluated whether the apparent diffusion coefficient (ADC) provided by diffusion-weighted imaging (DWI) varies according to biological features in breast cancer.

Methods

DWI was performed in 190 patients undergoing dynamic contrast-enhanced magnetic resonance imaging (MRI) for local staging. For each of the 192 index cancers we studied the correlation between ADC and classical histopathological and immunohistochemical breast tumour features (size, histological type, grade, oestrogen receptor [ER] and Ki-67 expression, HER2 status). ADC was compared with immunohistochemical surrogates of the intrinsic subtypes (Luminal A; Luminal B; HER2-enriched; triple-negative). Correlations were analysed using the Mann–Whitney U and Kruskal–Wallis H tests.

Results

A weak, statistically significant correlation was observed between ADC values and the percentage of ER-positive cells (-0.168, P = 0.020). Median ADC values were significantly higher in ER-negative than in ER-positive tumours (1.110 vs 1.050 × 10-3 mm2/s, P = 0.015). HER2-enriched tumours had the highest median ADC value (1.190 × 10-3 mm2/s, range 0.950–2.090). Multiple comparisons showed that this value was significantly higher than that of Luminal A (1.025 × 10-3 mm2/s [0.700–1.340], P = 0.004) and Luminal B/HER2-negative (1.060 × 10-3 mm2/s [0.470–2.420], P = 0.008) tumours. A trend towards statistical significance (P = 0.018) was seen with Luminal B/HER2-positive tumours.

Conclusions

ADC values vary significantly according to biological tumour features, suggesting that cancer heterogeneity influences imaging parameters.

Key Points

DWI may identify biological heterogeneity of breast neoplasms.

ADC values vary significantly according to biological features of breast cancer.

Compared with other types, HER2-enriched tumours show highest median ADC value.

Knowledge of biological heterogeneity of breast neoplasm may improve imaging interpretation.

Keywords

Breast neoplasms Histological subtypes Diffusion-weighted MRI Estrogen receptor HER2 

References

  1. 1.
    Goldhirsch A, Ingle JN, Gelber RD, Coates AS, Thurlimann B, Senn HJ (2009) Thresholds for therapies: highlights of the St Gallen International Expert Consensus on the primary therapy of early breast cancer 2009. Ann Oncol 20:1319–1329PubMedCrossRefGoogle Scholar
  2. 2.
    Perou CM, Sorlie T, Eisen MB et al (2000) Molecular portraits of human breast tumours. Nature 406:747–752PubMedCrossRefGoogle Scholar
  3. 3.
    Sorlie T, Perou CM, Tibshirani R et al (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci U S A 98:10869–10874PubMedCrossRefGoogle Scholar
  4. 4.
    Parker JS, Mullins M, Cheang MC et al (2009) Supervised risk predictor of breast cancer based on intrinsic subtypes. J Clin Oncol 27:1160–1167PubMedCrossRefGoogle Scholar
  5. 5.
    Cheang MC, Chia SK, Voduc D et al (2009) Ki67 index, HER2 status, and prognosis of patients with luminal B breast cancer. J Natl Cancer Inst 101:736–750PubMedCrossRefGoogle Scholar
  6. 6.
    Hugh J, Hanson J, Cheang MC et al (2009) Breast cancer subtypes and response to docetaxel in node-positive breast cancer: use of an immunohistochemical definition in the BCIRG 001 trial. J Clin Oncol 27:1168–1176PubMedCrossRefGoogle Scholar
  7. 7.
    Penault-Llorca F, Andre F, Sagan C et al (2009) Ki67 expression and docetaxel efficacy in patients with estrogen receptor-positive breast cancer. J Clin Oncol 27:2809–2815PubMedCrossRefGoogle Scholar
  8. 8.
    Montemurro F, Martincich L, Sarotto I et al (2007) Relationship between DCE-MRI morphological and functional features and histopathological characteristics of breast cancer. Eur Radiol 17:1490–1497PubMedCrossRefGoogle Scholar
  9. 9.
    Tuncbilek N, Karakas HM, Okten OO (2005) Dynamic magnetic resonance imaging in determining histopathological prognostic factors of invasive breast cancers. Eur J Radiol 53:199–205PubMedCrossRefGoogle Scholar
  10. 10.
    Chang YW, Kwon KH, Choi DL et al (2009) Magnetic resonance imaging of breast cancer and correlation with prognostic factors. Acta Radiol 50:990–998PubMedCrossRefGoogle Scholar
  11. 11.
    Loo CE, Straver ME, Rodenhuis S et al (2011) Magnetic resonance imaging response monitoring of breast cancer during neoadjuvant chemotherapy: relevance of breast cancer subtype. J Clin Oncol 29:660–666PubMedCrossRefGoogle Scholar
  12. 12.
    Hagmann P, Jonasson L, Maeder P, Thiran JP, Wedeen VJ, Meuli R (2006) Understanding diffusion MR imaging techniques: from scalar diffusion-weighted imaging to diffusion tensor imaging and beyond. Radiographics 26(Suppl 1):S205–S223PubMedCrossRefGoogle Scholar
  13. 13.
    Koh DM, Collins DJ (2007) Diffusion-weighted MRI in the body: applications and challenges in oncology. AJR Am J Roentgenol 188:1622–1635PubMedCrossRefGoogle Scholar
  14. 14.
    Schnapauff D, Zeile M, Niederhagen MB et al (2009) Diffusion-weighted echo-planar magnetic resonance imaging for the assessment of tumor cellularity in patients with soft-tissue sarcomas. J Magn Reson Imaging 29:1355–1359PubMedCrossRefGoogle Scholar
  15. 15.
    Pickles MD, Gibbs P, Lowry M, Turnbull LW (2006) Diffusion changes precede size reduction in neoadjuvant treatment of breast cancer. Magn Reson Imaging 24:843–847PubMedCrossRefGoogle Scholar
  16. 16.
    Hamstra DA, Rehemtulla A, Ross BD (2007) Diffusion magnetic resonance imaging: a biomarker for treatment response in oncology. J Clin Oncol 25:4104–4109PubMedCrossRefGoogle Scholar
  17. 17.
    Partridge SC, DeMartini WB, Kurland BF, Eby PR, White SW, Lehman CD (2009) Quantitative diffusion-weighted imaging as an adjunct to conventional breast MRI for improved positive predictive value. AJR Am J Roentgenol 193:1716–1722PubMedCrossRefGoogle Scholar
  18. 18.
    Tsushima Y, Takahashi-Taketomi A, Endo K (2009) Magnetic resonance (MR) differential diagnosis of breast tumors using apparent diffusion coefficient (ADC) on 1.5-T. J Magn Reson Imaging 30:249–255PubMedCrossRefGoogle Scholar
  19. 19.
    Jeh SK, Kim SH, Kim HS et al (2011) Correlation of the apparent diffusion coefficient value and dynamic magnetic resonance imaging findings with prognostic factors in invasive ductal carcinoma. J Magn Reson Imaging 33:102–109PubMedCrossRefGoogle Scholar
  20. 20.
    Kim SH, Cha ES, Kim HS et al (2009) Diffusion-weighted imaging of breast cancer: correlation of the apparent diffusion coefficient value with prognostic factors. J Magn Reson Imaging 30:615–620PubMedCrossRefGoogle Scholar
  21. 21.
    The American College of Radiology (2011) ACR practice guidelines for the performance of contrast enhanced magnetic resonance imaging (MRI) of the breast. http://www.acr.org/SecondaryMainMenuCategories/quality_safety/guidelines/breast/MRI-Guided-Breast.aspx
  22. 22.
    Sardanelli F, Boetes C, Borisch B et al (2010) Magnetic resonance imaging of the breast: recommendations from the EUSOMA working group. Eur J Cancer 46:1296–1316PubMedCrossRefGoogle Scholar
  23. 23.
    Rausch DR, Hendrick RE (2006) How to optimize clinical breast MR imaging practices and techniques on Your 1.5-T system. Radiographics 26:1469–1484PubMedCrossRefGoogle Scholar
  24. 24.
    Padhani AR, Liu G, Koh DM et al (2009) Diffusion-weighted magnetic resonance imaging as a cancer biomarker: consensus and recommendations. Neoplasia 11:102–125PubMedGoogle Scholar
  25. 25.
    Elston CW, Ellis IO (1991) Pathological prognostic factors in breast cancer. I. The value of histological grade in breast cancer: experience from a large study with long-term follow-up. Histopathology 19:403–410PubMedCrossRefGoogle Scholar
  26. 26.
    Wolff AC, Hammond ME, Schwartz JN et al (2007) American Society of Clinical Oncology/College of American Pathologists guideline recommendations for human epidermal growth factor receptor 2 testing in breast cancer. J Clin Oncol 25:118–145PubMedCrossRefGoogle Scholar
  27. 27.
    Park S, Koo JS, Kim MS et al (2012) Characteristics and outcomes according to molecular subtypes of breast cancer as classified by a panel of four biomarkers using immunohistochemistry. Breast 21:50–57PubMedCrossRefGoogle Scholar
  28. 28.
    Goldhirsch A, Wood WC, Coates AS, Gelber RD, Thurlimann B, Senn HJ (2011) Strategies for subtypes – dealing with the diversity of breast cancer: highlights of the St. Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2011. Ann Oncol 22:1736–1747PubMedCrossRefGoogle Scholar
  29. 29.
    Moffat BA, Chenevert TL, Lawrence TS et al (2005) Functional diffusion map: a noninvasive MRI biomarker for early stratification of clinical brain tumor response. Proc Natl Acad Sci U S A 102:5524–5529PubMedCrossRefGoogle Scholar
  30. 30.
    Weissleder R, Pittet MJ (2008) Imaging in the era of molecular oncology. Nature 452:580–589PubMedCrossRefGoogle Scholar
  31. 31.
    Gore JC, Manning HC, Quarles CC, Waddell KW, Yankeelov TE (2011) Magnetic resonance in the era of molecular imaging of cancer. Magn Reson Imaging 29:587–600PubMedCrossRefGoogle Scholar
  32. 32.
    Razek AA, Gaballa G, Denewer A, Nada N (2010) Invasive ductal carcinoma: correlation of apparent diffusion coefficient value with pathological prognostic factors. NMR Biomed 23:619–623PubMedCrossRefGoogle Scholar
  33. 33.
    Costantini M, Belli P, Rinaldi P et al (2010) Diffusion-weighted imaging in breast cancer: relationship between apparent diffusion coefficient and tumour aggressiveness. Clin Radiol 65:1005–1012PubMedCrossRefGoogle Scholar
  34. 34.
    Heo SH, Jeong YY, Shin SS et al (2010) Apparent diffusion coefficient value of diffusion-weighted imaging for hepatocellular carcinoma: correlation with the histologic differentiation and the expression of vascular endothelial growth factor. Korean J Radiol 11:295–303PubMedCrossRefGoogle Scholar
  35. 35.
    Muraoka N, Uematsu H, Kimura H et al (2008) Apparent diffusion coefficient in pancreatic cancer: characterization and histopathological correlations. J Magn Reson Imaging 27:1302–1308PubMedCrossRefGoogle Scholar
  36. 36.
    Rosenkrantz AB, Niver BE, Fitzgerald EF, Babb JS, Chandarana H, Melamed J (2010) Utility of the apparent diffusion coefficient for distinguishing clear cell renal cell carcinoma of low and high nuclear grade. AJR Am J Roentgenol 195:W344–W351PubMedCrossRefGoogle Scholar
  37. 37.
    Iacconi C (2010) Diffusion and perfusion of the breast. Eur J Radiol 76:386–390PubMedCrossRefGoogle Scholar
  38. 38.
    Marini C, Iacconi C, Giannelli M, Cilotti A, Moretti M, Bartolozzi C (2007) Quantitative diffusion-weighted MR imaging in the differential diagnosis of breast lesion. Eur Radiol 17:2646–2655PubMedCrossRefGoogle Scholar
  39. 39.
    Yabuuchi H, Matsuo Y, Okafuji T et al (2008) Enhanced mass on contrast-enhanced breast MR imaging: Lesion characterization using combination of dynamic contrast-enhanced and diffusion-weighted MR images. J Magn Reson Imaging 28:1157–1165PubMedCrossRefGoogle Scholar
  40. 40.
    Matsuoka A, Minato M, Harada M et al (2008) Comparison of 3.0- and 1.5-Tesla diffusion-weighted imaging in the visibility of breast cancer. Radiat Med 26:15–20PubMedCrossRefGoogle Scholar
  41. 41.
    Woodhams R, Kakita S, Hata H et al (2009) Diffusion-weighted imaging of mucinous carcinoma of the breast: evaluation of apparent diffusion coefficient and signal intensity in correlation with histologic findings. AJR Am J Roentgenol 193:260–266PubMedCrossRefGoogle Scholar
  42. 42.
    Seo BK, Pisano ED, Kuzimak CM et al (2006) Correlation of HER-2/neu overexpression with mammography and age distribution in primary breast carcinomas. Acad Radiol 13:1211–1218PubMedCrossRefGoogle Scholar
  43. 43.
    Kawashima H (2010) Imaging findings of triple-negative breast cancer. Breast Cancer 18:145CrossRefGoogle Scholar
  44. 44.
    Dogan BE, Gonzalez-Angulo AM, Gilcrease M, Dryden MJ, Yang WT (2010) Multimodality imaging of triple receptor-negative tumors with mammography, ultrasound, and MRI. AJR Am J Roentgenol 194:1160–1166PubMedCrossRefGoogle Scholar
  45. 45.
    Uematsu T, Kasami M, Yuen S (2009) Triple-negative breast cancer: correlation between MR imaging and pathologic findings. Radiology 250:638–647PubMedCrossRefGoogle Scholar
  46. 46.
    Yabuuchi H, Matsuo Y, Kamitani T et al (2010) Non-mass-like enhancement on contrast-enhanced breast MR imaging: lesion characterization using combination of dynamic contrast-enhanced and diffusion-weighted MR images. Eur J Radiol 75:e126–e132PubMedCrossRefGoogle Scholar
  47. 47.
    Baltzer PA, Benndorf M, Dietzel M, Gajda M, Camara O, Kaiser WA (2010) Sensitivity and specificity of unenhanced MR mammography (DWI combined with T2-weighted TSE imaging, ueMRM) for the differentiation of mass lesions. Eur Radiol 20:1101–1110PubMedCrossRefGoogle Scholar
  48. 48.
    Woodhams R, Kakita S, Hata H et al (2010) Identification of residual breast carcinoma following neoadjuvant chemotherapy: diffusion-weighted imaging – comparison with contrast-enhanced MR imaging and pathologic findings. Radiology 254:357–366PubMedCrossRefGoogle Scholar
  49. 49.
    Park SH, Moon WK, Cho N et al (2011) Diffusion-weighted MR imaging: pretreatment prediction of response to neoadjuvant chemotherapy in patients with breast cancer. Radiology 257:56–63CrossRefGoogle Scholar

Copyright information

© European Society of Radiology 2012

Authors and Affiliations

  • Laura Martincich
    • 1
    Email author
  • Veronica Deantoni
    • 1
  • Ilaria Bertotto
    • 1
  • Stefania Redana
    • 2
  • Franziska Kubatzki
    • 3
  • Ivana Sarotto
    • 4
  • Valentina Rossi
    • 2
  • Michele Liotti
    • 1
  • Riccardo Ponzone
    • 3
  • Massimo Aglietta
    • 2
  • Daniele Regge
    • 1
  • Filippo Montemurro
    • 2
  1. 1.Unit of Radiology, Institute for Cancer Research and Treatment (IRCC)CandioloItaly
  2. 2.Division of Medical OncologyInstitute for Cancer Research and Treatment (IRCC)CandioloItaly
  3. 3.Division of Gynecological OncologyInstitute for Cancer Research and Treatment (IRCC)CandioloItaly
  4. 4.Unit of Pathology, Institute for Cancer Research and Treatment (IRCC)CandioloItaly

Personalised recommendations