Advertisement

European Radiology

, Volume 22, Issue 7, pp 1430–1441 | Cite as

Current status and guidelines for the assessment of tumour vascular support with dynamic contrast-enhanced computed tomography

  • K. A. Miles
  • T.-Y. Lee
  • V. Goh
  • E. Klotz
  • C. Cuenod
  • S. Bisdas
  • A. M. Groves
  • M. P. Hayball
  • R. Alonzi
  • T. Brunner
  • on behalf of the Experimental Cancer Medicine Centre Imaging Network Group
Computed Tomography

Abstract

Dynamic contrast-enhanced computed tomography (DCE-CT) assesses the vascular support of tumours through analysis of temporal changes in attenuation in blood vessels and tissues during a rapid series of images acquired with intravenous administration of iodinated contrast material. Commercial software for DCE-CT analysis allows pixel-by-pixel calculation of a range of validated physiological parameters and depiction as parametric maps. Clinical studies support the use of DCE-CT parameters as surrogates for physiological and molecular processes underlying tumour angiogenesis. DCE-CT has been used to provide biomarkers of drug action in early phase trials for the treatment of a range of cancers. DCE-CT can be appended to current imaging assessments of tumour response with the benefits of wide availability and low cost. This paper sets out guidelines for the use of DCE-CT in assessing tumour vascular support that were developed using a Delphi process. Recommendations encompass CT system requirements and quality assurance, radiation dosimetry, patient preparation, administration of contrast material, CT acquisition parameters, terminology and units, data processing and reporting. DCE-CT has reached technical maturity for use in therapeutic trials in oncology. The development of these consensus guidelines may promote broader application of DCE-CT for the evaluation of tumour vascularity.

Key Points

DCE-CT can robustly assess tumour vascular support

DCE-CT has reached technical maturity for use in therapeutic trials in oncology

This paper presents consensus guidelines for using DCE-CT in assessing tumour vascularity

Keywords

Tomography X-ray computed Contrast media Neoplasms Blood supply Diagnostic imaging Methods Standards Guideline 

Notes

Acknowledgements

The authors would like to thank Giuseppe Petralia, University of Milan, Italy, and Koh Tong San, Nanyang Technological University, Singapore for contributing to the Delphi process and Dushyant Sahani, Harvard Medical School, USA and Finn Rassmussen, University Hospital, Arhus, Denmark for their feedback on the recommendations. The authors would also like to thank the ECMC Imaging Steering Committee for their expertise and the Secretariat for supporting and organising the workshop. The Experimental Cancer Medicine Centre Initiative is jointly funded by Cancer Research UK, the National Institute for Health Research in England and the Departments of Health for Scotland, Wales and Northern Ireland.

T.Y. Lee has a licensing agreement with GE Healthcare with respect to the CT Perfusion software. V. Goh has a research agreement with Siemens Healthcare. K.A. Miles and M.P. Hayball are shareholders and directors of TexRAD Ltd, a company with an interest in CT image processing. M.P. Hayball is a shareholder and director of Cambridge Computed Imaging Ltd—a company that develops and markets medical imaging software.

References

  1. 1.
    Cenic A, Nabavi DG, Craen RA, Gelb AW, Lee TY (2000) A CT method to measure hemodynamics in brain tumors: validation and application of cerebral blood flow maps. AJNR Am J Neuroradiol 21:462–470PubMedGoogle Scholar
  2. 2.
    Hattori H, Miyoshi T, Okada J, Yoshikawa K, Arimizu N, Hattori N (1994) Tumor blood flow measured using dynamic computed tomography. Invest Radiol 29:873–876PubMedCrossRefGoogle Scholar
  3. 3.
    Pollard RE, Garcia TC, Stieger SM, Ferrara KW, Sadlowski AR, Wisner ER (2004) Quantitative evaluation of perfusion and permeability of peripheral tumours using contrast-enhanced computed tomography. Invest Radiol 39:340–349PubMedCrossRefGoogle Scholar
  4. 4.
    Ng CS, Kodama Y, Mullani NA, Barron BJ, Wei W, Herbst RS, Abbruzzese JL, Charnsangavej C (2009) Tumor blood flow measured by perfusion computed tomography and 15O-labeled water positron emission tomography: a comparison study. J Comput Assist Tomogr 33:460–465PubMedCrossRefGoogle Scholar
  5. 5.
    Purdie TG, Henderson E, Lee TY (2001) Functional CT imaging of angiogenesis in rabbit VX2 soft-tissue tumour. Phys Med Biol 46:3161–3175PubMedCrossRefGoogle Scholar
  6. 6.
    Cuenod C, Leconte I, Siauve N, Resten A, Dromain C, Poulet B, Frouin F, Clement O, Frija G (2001) Early changes in liver perfusion caused by occult metastases in rats: detection with quantitative CT. Radiology 218:556–561PubMedGoogle Scholar
  7. 7.
    Goh V, Halligan S, Gartner L, Bassett P, Bartram CI (2006) Quantitative colorectal cancer perfusion measurement by multidetector-row CT: does greater tumour coverage improve measurement reproducibility? Br J Radiol 79:578–583PubMedCrossRefGoogle Scholar
  8. 8.
    Ng QS, Goh V, Klotz E, Fichte H, Saunders MI, Hoskin PJ, Padhani AR (2006) Quantitative assessment of lung cancer perfusion using MDCT: does measurement reproducibility improve with greater tumor volume coverage? AJR Am J Roentgenol 187:1079–1084PubMedCrossRefGoogle Scholar
  9. 9.
    Bisdas S, Surlan-Popovic K, Didanovic V, Vogl TJ (2008) Functional CT of squamous cell carcinoma in the head and neck: repeatability of tumor and muscle quantitative measurements, inter- and intra-observer agreement. Eur Radiol 18:2241–2250PubMedCrossRefGoogle Scholar
  10. 10.
    Axel L (1980) Cerebral blood flow determination by rapid-sequence computed tomography: theoretical analysis. Radiology 137:679–686PubMedGoogle Scholar
  11. 11.
    Miles KA, Hayball MP, Dixon AK (1993) Functional images of hepatic perfusion obtained with dynamic computed tomography. Radiology 188:405–411PubMedGoogle Scholar
  12. 12.
    Lee TY, Chhem RK (2010) Impact of new technologies on dose reduction in CT. Eur J Radiol 76:28–35PubMedCrossRefGoogle Scholar
  13. 13.
    Petralia G, Bonello L, Viotti S, Preda L, d’Andrea G, Bellomi M (2010) CT perfusion in oncology: how to do it. Cancer Imaging 10:8–19PubMedCrossRefGoogle Scholar
  14. 14.
    Lee TY, Purdie TG, Stewart E (2003) CT imaging of angiogenesis. Q J Nucl Med 47:171–187PubMedGoogle Scholar
  15. 15.
    Abels B, Klotz E, Tomandl BF, Kloska SP, Lell MM (2010) Perfusion CT in acute ischemic stroke: a qualitative and quantitative comparison of deconvolution and maximum slope approach. AJNR Am J Neuroradiol 31:1690–1698PubMedCrossRefGoogle Scholar
  16. 16.
    Schramm P, Xyda A, Klotz E, Tronnier V, Knauth M, Hartmann M (2010) Dynamic CT perfusion imaging of intra-axial brain tumours: differentiation of high-grade gliomas from primary CNS lymphomas. Eur Radiol 20:2482–2490PubMedCrossRefGoogle Scholar
  17. 17.
    Helck A, Sommer WH, Klotz E, Wessely M, Nikolaou K, Clevert DA, Notohamiprodjo M, Illner WD, Reiser M, Becker HC (2010) Determination of glomerular filtration rate using dynamic CT-angiography: simultaneous acquisition of morphological and functional information. Invest Radiol 45:387–392PubMedGoogle Scholar
  18. 18.
    Bisdas S, Konstantinou G, Surlan-Popovic K, Khoshneviszadeh A, Baghi M, Vogl TJ, Koh TS, Mack MG (2008) Dynamic contrast-enhanced CT of head and neck tumors: comparison of first-pass and permeability perfusion measurements using two different commercially available tracer kinetics models. Acad Radiol 15:1580–1589PubMedCrossRefGoogle Scholar
  19. 19.
    Goh V, Halligan S, Bartram CI (2007) Quantitative tumor perfusion assessment with multidetector CT: are measurements from two commercial software packages interchangeable? Radiology 242:777–782PubMedCrossRefGoogle Scholar
  20. 20.
    Cuenod CA, Fournier L, Balvay D, Guinebretiere JM (2006) Tumor angiogenesis: pathophysiology and implications for contrast-enhanced MRI and CT assessment. Abdom Imaging 31:188–193PubMedCrossRefGoogle Scholar
  21. 21.
    Swensen SJ, Brown LR, Colby TV, Weaver AL, Midthun DE (1996) Lung nodule enhancement at CT: prospective findings. Radiology 201:447–455PubMedGoogle Scholar
  22. 22.
    Jinzaki M, Tanimoto A, Mukai M, Ikeda E, Kobayashi S, Yuasa Y, Narimatsu Y, Murai M (2000) Double-phase helical CT of small renal parenchymal neoplasms: correlation with pathologic findings and tumor angiogenesis. J Comput Assist Tomogr 24:835–842PubMedCrossRefGoogle Scholar
  23. 23.
    Tateishi U, Kusumoto M, Nishihara H, Nagashima K, Morikawa T, Moriyama N (2002) Contrast-enhanced dynamic computed tomography for the evaluation of tumor angiogenesis in patients with lung carcinoma. Cancer 95:835–842PubMedCrossRefGoogle Scholar
  24. 24.
    Hayashi K, Tozaki M, Sugisaki M, Yoshida N, Fukuda K, Tanabe H (2002) Dynamic multislice helical CT of ameloblastoma and odontogenic keratocyst: correlation between contrast enhancement and angiogenesis. J Comput Assist Tomogr 26:922–926PubMedCrossRefGoogle Scholar
  25. 25.
    Yi CA, Lee KS, Kim EA, Han J, Kim H, Kwon OJ, Jeong YJ, Kim S (2004) Solitary pulmonary nodules: dynamic enhanced multi-detector row CT study and comparison with vascular endothelial growth factor and microvessel density. Radiology 233:191–199PubMedCrossRefGoogle Scholar
  26. 26.
    Xie Q, Zhang J, Wu PH, Jiang XQ, Chen SL, Wang QL, Xu J, Chen GD, Deng JH (2005) Bladder transitional cell carcinoma: correlation of contrast enhancement on computed tomography with histological grade and tumour angiogenesis. Clin Radiol 60:215–223PubMedCrossRefGoogle Scholar
  27. 27.
    Li ZP, Meng QF, Sun CH, Xu DS, Fan M, Yang XF, Chen DY (2005) Tumor angiogenesis and dynamic CT in colorectal carcinoma: radiologic-pathologic correlation. World J Gastroenterol 11:1287–1291PubMedGoogle Scholar
  28. 28.
    Wang JH, Min PQ, Wang PJ, Cheng WX, Zhang XH, Wang Y, Zhao XH, Mao XQ (2006) Dynamic CT evaluation of tumor vascularity in renal cell carcinoma. AJR Am J Roentgenol 186:1423–1430PubMedCrossRefGoogle Scholar
  29. 29.
    Chen Y, Zhang J, Dai J, Feng X, Lu H, Zhou C (2009) Angiogenesis of renal cell carcinoma: perfusion CT findings. Abdom Imaging 35:622–628PubMedCrossRefGoogle Scholar
  30. 30.
    Liu J, Xiong Z, Zhou H, Zhou M, Zhou J, Fu C (2009) Multi-slice spiral CT pulmonary perfusion imaging and the expression of VEGF/PCNA in non-small cell lung cancer. Zhong Nan Da Xue Xue Bao Yi Xue Ban 34:406–511PubMedGoogle Scholar
  31. 31.
    Bai RJ, Cheng XG, Qu H, Shen BZ, Han MJ, Wu ZH (2009) Solitary pulmonary nodules: comparison of multi-slice computed tomography perfusion study with vascular endothelial growth factor and microvessel density. Chin Med J (Engl) 122:541–547Google Scholar
  32. 32.
    Goh V, Halligan S, Daley F, Wellsted DM, Guenther T, Bartram CI (2008) Colorectal tumor vascularity: quantitative assessment with multidetector CT—do tumor perfusion measurements reflect angiogenesis? Radiology 249:510–517PubMedCrossRefGoogle Scholar
  33. 33.
    Miles KA, Griffiths MR, Fuentes MA (2001) Standardised perfusion value: a universal contrast enhancement scale that correlates with FDG-PET in lung cancer. Radiology 220:548–553PubMedGoogle Scholar
  34. 34.
    Miles KA (2010) Molecular imaging with dynamic contrast-enhanced computed tomography. Clin Radiol 65:549–556PubMedCrossRefGoogle Scholar
  35. 35.
    Semenza GL (2002) HIF-1 and tumor progression: pathophysiology and therapeutics. Trends Mol Med 8(4 Suppl):S62–67PubMedCrossRefGoogle Scholar
  36. 36.
    Bisdas S, Rumboldt Z, Surlan-Popovic K, Baghi M, Koh TS, Vogl TJ, Mack MG (2010) Perfusion CT in squamous cell carcinoma of the upper aerodigestive tract: long-term predictive value of baseline perfusion CT measurements. AJNR Am J Neuroradiol 31:576–581PubMedCrossRefGoogle Scholar
  37. 37.
    Bisdas S, Baghi M, Wagenblast J, Knecht R, Thng CH, Koh TS, Vogl TJ (2007) Differentiation of benign and malignant parotid tumors using deconvolution-based perfusion CT imaging: feasibility of the method and initial results. Eur J Radiol 64:258–265PubMedCrossRefGoogle Scholar
  38. 38.
    Yeung WT, Lee TY, Del Maestro RF, Kozak R, Bennett J, Brown T (1994) Effect of steroids on iopamidol blood-brain transfer constant and plasma volume in brain tumors measured with X-ray computed tomography. J Neurooncol 18:53–60PubMedCrossRefGoogle Scholar
  39. 39.
    Falk SJ, Ramsay JR, Ward R, Miles KA, Dixon AK, Bleehen NM (1994) BW12C perturbs normal and tumour tissue oxygenation and blood flow in man. Radiother Oncol 32:210–217PubMedCrossRefGoogle Scholar
  40. 40.
    Ford J, Miles K, Hayball M, Bearcroft P, Bleehan N, Osborn C (1996) A simplified method for measurement of blood-brain barrier permeability using CT: preliminary results and the effect of RMP-7. In: Faulkner K (ed) Quantitative imaging in oncology. British Institute of Radiology, London, pp 1–5Google Scholar
  41. 41.
    Thomas JP, Arzoomanian RZ, Alberti D, Marnocha R, Lee F, Friedl A, Tutsch K, Dresen A, Geiger P, Pluda J, Fogler W, Schiller JH, Wilding G (2003) Phase I pharmacokinetic and pharmacodynamic study of recombinant human endostatin in patients with advanced solid tumors. J Clin Oncol 21:223–231PubMedCrossRefGoogle Scholar
  42. 42.
    Willet CG, Boucher Y, di Tomaso E, Duda DG, Munn LL, Tong RT, Chung DC, Sahani DV, Kalva SP, Kozin SV, Mino M, Cohen KS, Scadden DT, Hartford AC, Fischman AJ, Clark JW, Ryan DP, Zhu AX, Blaszkowsky LS, Chen HX, Shellito PC, Lauwers GY, Jain RK (2004) Direct evidence that the VEGF-specific antibody bevacizumab has antivascular effects in human rectal cancer. Nat Med 10:145–147CrossRefGoogle Scholar
  43. 43.
    Xiong HQ, Herbst R, Faria SC, Scholz C, Davis D, Jackson EF, Madden T, McConkey D, Hicks M, Hess K, Charnsangavej CA, Abbruzzese JL (2004) A phase I surrogate endpoint study of SU6668 in patients with solid tumours. Invest New Drugs 22:459–466PubMedCrossRefGoogle Scholar
  44. 44.
    McNeel DG, Eickhoff J, Lee FT, King DM, Alberti D, Thomas JP, Friedl A, Kolesar J, Marnocha R, Volkman J, Zhang J, Hammershaimb L, Zwiebel JA, Wilding G (2005) Phase I trial of a monoclonal antibody specific for integrin (MEDI-522) in patients with advanced malignancies, including an assessment on tumour perfusion. Clin Cancer Res 11:7851–7860PubMedCrossRefGoogle Scholar
  45. 45.
    Faria SC, Ng CS, Hess KR, Phongkitkarun S, Szejnfeld J, Daliani D, Charnsangavej C (2007) CT quantification of effects of thalidomide in patients with metastatic renal cell carcinoma. AJR Am J Roentgenol 189:378–385PubMedCrossRefGoogle Scholar
  46. 46.
    Gandhi D, Chepeha DB, Miller T, Carlos RC, Bradford CR, Karamchandani R, Worden F, Eisbruch A, Teknos TN, Wolf GT, Mukherji SK (2006) Correlation between initial and early follow-up CT perfusion parameters with endoscopic tumor response in patients with advanced squamous cell carcinomas of the oropharynx treated with organ-preservation therapy. AJNR Am J Neuroradiol 27:101–106PubMedGoogle Scholar
  47. 47.
    Meijerink MR, van Cruijsen H, Hoekman K, Kater M, van Schaik C, van Waesberghe JH, Giaccone G, Manoliu RA (2007) The use of perfusion CT for the evaluation of therapy combining AZD2171 with gefitinib in cancer patients. Eur Radiol 17:1700–1713PubMedCrossRefGoogle Scholar
  48. 48.
    Ng QS, Goh V, Carnell D, Meer K, Padhani AR, Saunders MI, Hoskin PJ (2007) Tumor antivascular effects of radiotherapy combined with combretastatin A4 phosphate in human non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 67:1375–1380PubMedCrossRefGoogle Scholar
  49. 49.
    Ng QS, Goh V, Milner J, Stratford MR, Folkes LK, Tozer GM, Saunders MI, Hoskin PJ (2007) Effect of nitric-oxide synthesis on tumour blood volume and vascular activity: a phase I study. Lancet Oncol 8:111–118PubMedCrossRefGoogle Scholar
  50. 50.
    Koukourakis MI, Mavanis I, Kouklakis G, Pitiakoudis M, Minopoulos G, Manolas C, Simopoulos C (2007) Early antivascular effects of bevacizumab anti-VEGF monoclonal antibody on colorectal carcinomas assessed with functional CT imaging. Am J Clin Oncol 30:315–318PubMedCrossRefGoogle Scholar
  51. 51.
    Schlemmer M, Sourbron SP, Schinwald N, Nikolaou K, Becker CR, Reiser MF, Berger F (2011) Perfusion patterns of metastatic gastrointestinal stromal tumor lesions under specific molecular therapy. Eur J Radiol 77:312–8PubMedCrossRefGoogle Scholar
  52. 52.
    Petralia G, Preda L, Giugliano G, Jereczek-Fossa BA, Rocca A, D’Andrea G, Holalkere NS, Chiesa F, Bellomi M (2009) Perfusion computed tomography for monitoring induction chemotherapy in patients with squamous cell carcinoma of the upper aerodigestive tract: correlation between changes in tumor perfusion and tumor volume. J Comput Assist Tomogr 33:552–559PubMedCrossRefGoogle Scholar
  53. 53.
    Ng CS, Wang X, Faria SC, Lin E, Charnsangavej C, Tannir NM (2010) Perfusion CT in patients with metastatic renal cell carcinoma treated with interferon. AJR Am J Roentgenol 194:166–171PubMedCrossRefGoogle Scholar
  54. 54.
    Fournier LS, Oudard S, Thiam R, Trinquart L, Banu E, Medioni J, Balvay D, Chatellier G, Frija G, Cuenod CA (2010) Metastatic renal carcinoma: evaluation of antiangiogenic therapy with dynamic contrast-enhanced CT. Radiology 256:511–518PubMedCrossRefGoogle Scholar
  55. 55.
    Lind JS, Meijerink MR, Dingemans AM, van Kuijk C, Ollers MC, de Ruysscher D, Postmus PE, Smit EF (2010) Dynamic contrast-enhanced CT in patients treated with sorafenib and erlotinib for non-small cell lung cancer: a new method of monitoring treatment? Eur Radiol 20:2890–2898PubMedCrossRefGoogle Scholar
  56. 56.
    Ng CS, Charnsangavej C, Wei W, Yao JC (2011) Perfusion CT findings in patients with metastatic carcinoid tumors undergoing bevacizumab and interferon therapy. AJR Am J Roentgenol 196:569–576PubMedCrossRefGoogle Scholar
  57. 57.
    Wang J, Wu N, Cham MD, Song Y (2009) Tumor response in patients with advanced non-small cell lung cancer: perfusion CT evaluation of chemotherapy and radiation therapy. AJR Am J Roentgenol 193:1090–1096PubMedCrossRefGoogle Scholar
  58. 58.
    Bisdas S, Spicer K, Rumboldt Z (2008) Whole-tumor perfusion CT parameters and glucose metabolism measurements in head and neck squamous cell carcinomas: a pilot study using combined positron-emission tomography/CT imaging. AJNR Am J Neuroradiol 29:1376–1381PubMedCrossRefGoogle Scholar
  59. 59.
    Groves AM, Wishart GC, Shastry M, Moyle P, Iddles S, Britton P, Gaskarth M, Warren RM, Ell PJ, Miles KA (2009) Metabolic-flow relationships in primary breast cancer: feasibility of combined PET/dynamic contrast-enhanced CT. Eur J Nucl Med Mol Imaging 36:416–421PubMedCrossRefGoogle Scholar
  60. 60.
    Veit-Haibach P, Treyer V, Strobel K, Soyka JD, Husmann L, Schaefer NG, Tschopp A, Hany TF (2010) Feasibility of integrated CT-liver perfusion in routine FDG-PET/CT. Abdom Imaging 35:528–536PubMedCrossRefGoogle Scholar
  61. 61.
    Miles KA, Williams RE (2008) Warburg revisited: imaging tumour blood flow and metabolism. Cancer Imaging 8:81–86PubMedCrossRefGoogle Scholar
  62. 62.
    Haberland U, Klotz E, Abolmaali N (2010) Performance assessment of dynamic spiral scan modes with variable pitch for quantitative perfusion computed tomography. Invest Radiol 45:378–386PubMedGoogle Scholar
  63. 63.
    Shrimpton P, Hillier M, Lewis M, Dunn M (2005) Doses from computed tomography (CT) examinations in the UK – 2003 review. NRPB-W67: National Radiological Protection Board.Google Scholar
  64. 64.
    Tatsugmai F, Husmann L, Herzog BA, Burkhard N, Valenta I, Gaemperli O, Kaufmann PA (2009) Evaluation of a body mass index-adapted protocol for low-dose 64-MDCT coronary angiography with prospective triggering. Am J Radiol 192:635–638Google Scholar
  65. 65.
    Crone C (1963) The permeability of capillaries in various organs as determined by use of the ‘indicator diffusion’ method. Acta Physiol Scand 58:292–305PubMedCrossRefGoogle Scholar
  66. 66.
    Renkin EM (1959) Transport of potassium-42 from blood to tissue in isolated mammalian skeletal muscles. Am J Physiol 197:1205–1210PubMedGoogle Scholar
  67. 67.
    Miles KA (1991) Measurement of tissue perfusion by dynamic computed tomography. Br J Radiol 64:409–412PubMedCrossRefGoogle Scholar
  68. 68.
    Balvay D, Troprès I, Billet R, Joubert A, Péoc’h M, Cuenod CA, Le Duc G (2009) Mapping the zonal organization of tumor perfusion and permeability in a rat glioma model by using dynamic contrast-enhanced synchrotron radiation CT. Radiology 250:692–702PubMedCrossRefGoogle Scholar
  69. 69.
    Balvay D, Frouin F, Calmon G, Bessoud B, Kahn E, Siauve N, Clément O, Cuenod CA (2005) New criteria for assessing fit quality in dynamic contrast-enhanced T1-weighted MRI for perfusion and permeability imaging. Magn Reson Med 54:868–877PubMedCrossRefGoogle Scholar
  70. 70.
    Miles KA, Young H, Chica SL, Esser PD (2007) Quantitative contrast-enhanced computed tomography: is there a need for system calibration? Eur Radiol 17:919–926PubMedCrossRefGoogle Scholar

Copyright information

© European Society of Radiology 2012

Authors and Affiliations

  • K. A. Miles
    • 1
  • T.-Y. Lee
    • 2
  • V. Goh
    • 3
  • E. Klotz
    • 4
  • C. Cuenod
    • 5
  • S. Bisdas
    • 6
  • A. M. Groves
    • 7
  • M. P. Hayball
    • 8
  • R. Alonzi
    • 9
  • T. Brunner
    • 10
  • on behalf of the Experimental Cancer Medicine Centre Imaging Network Group
  1. 1.Clinical Imaging Sciences Centre, Brighton & Sussex Medical SchoolUniversity of SussexFalmerUK
  2. 2.Imaging Research LaboratoriesRobarts Research InstituteLondonCanada
  3. 3.Division of Imaging Sciences and Biomedical Engineering, King’s College LondonImaging 2, Level 1, Lambeth Wing, St Thomas’ HospitalLondonUK
  4. 4.Siemens Healthcare SectorComputed Tomography H IM CT PLM-E PAForchheimGermany
  5. 5.Hopital Europeen Georges Pompidou (HEGP)INSERM U970 PARCCParisFrance
  6. 6.Department of NeuroradiologyEberhard Karls UniversityTübingenGermany
  7. 7.Institute of Nuclear MedicineUniversity College London, University College HospitalLondonUK
  8. 8.Cambridge Computed Imaging LtdCambridgeUK
  9. 9.Mount Vernon Cancer CentreNorthwoodUK
  10. 10.Gray Institute for Radiation, Oncology and BiologyOxfordUK

Personalised recommendations