Skip to main content

Advertisement

Log in

Characterization of ductal carcinoma in situ on diffusion weighted breast MRI

  • Breast
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objectives

To characterize ductal carcinoma in situ (DCIS) and its subtypes on diffusion-weighted imaging (DWI).

Methods

We retrospectively reviewed 74 pure DCIS lesions in 69 women who underwent DWI at 1.5 T (b = 0 and 600 s/mm2). Each lesion was characterized by qualitative DWI intensity, quantitative DWI lesion-to-normal contrast-to-noise ratio (CNR), and quantitative apparent diffusion coefficient (ADC). The detection rate was calculated with predetermined thresholds for each parameter. The effects of lesion size, grade, morphology, and necrosis were assessed.

Results

Ninety-six percent (71/74) of DCIS lesions demonstrated greater qualitative DWI intensity than normal breast tissue. Quantitatively, DCIS lesions demonstrated on average 56% greater signal than normal tissue (mean CNR = 1.83 ± 2.7) and lower ADC values (1.50 ± 0.28 × 10−3 mm2/s) than normal tissue (2.01 ± 0.37 × 10−3 mm2/s, p < 0.0001). A 91% detection rate was achieved utilizing an ADC threshold (<1.81 × 10−3 mm2/s ). Non-high-grade DCIS exhibited greater qualitative DWI intensity (p = 0.02) and quantitative CNR (p = 0.01) than high-grade DCIS but no difference in ADC (p = 0.40). Lesion size, morphology, and necrosis did not affect qualitative or quantitative DWI parameters of DCIS lesions (p > 0.05).

Conclusions

DCIS lesions have higher DWI signal intensity and lower ADC values than normal breast tissue. DWI warrants further investigation as a potential non-contrast MRI tool for early breast cancer detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hwang ES, Kinkel K, Esserman LJ, Lu Y, Weidner N, Hylton NM (2003) Magnetic resonance imaging in patients diagnosed with ductal carcinoma-in-situ: value in the diagnosis of residual disease, occult invasion, and multicentricity. Ann Surg Oncol 10:381–388

    Article  PubMed  Google Scholar 

  2. Kuhl CK, Schrading S, Bieling HB et al (2007) MRI for diagnosis of pure ductal carcinoma in situ: a prospective observational study. Lancet 370:485–492

    Article  PubMed  Google Scholar 

  3. Lehman CD (2010) Magnetic resonance imaging in the evaluation of ductal carcinoma in situ. J Natl Cancer Inst Monogr 41:150–151

    Article  Google Scholar 

  4. Menell JH, Morris EA, Dershaw DD, Abramson AF, Brogi E, Liberman L (2005) Determination of the presence and extent of pure ductal carcinoma in situ by mammography and magnetic resonance imaging. Breast J 11:382–390

    Article  PubMed  Google Scholar 

  5. Rosen EL, Smith-Foley SA, DeMartini WB, Eby PR, Peacock S, Lehman CD (2007) BI-RADS MRI enhancement characteristics of ductal carcinoma in situ. Breast J 13:545–550

    Article  PubMed  Google Scholar 

  6. National Institutes of Health (2009) State-of-the-Science Conference Statement: Diagnosis and Management of Ductal Carcinoma In Situ (DCIS). Available at: http://consensus.nih.gov/2009/dcis.htm. Accessed February 23, 2011

  7. Koh DM, Padhani AR (2006) Diffusion-weighted MRI: a new functional clinical technique for tumour imaging. Br J Radiol 79:633–635

    Article  PubMed  Google Scholar 

  8. Yoshikawa MI, Ohsumi S, Sugata S et al (2007) Comparison of breast cancer detection by diffusion-weighted magnetic resonance imaging and mammography. Radiat Med 25:218–223

    Article  PubMed  Google Scholar 

  9. Woodhams R, Matsunaga K, Kan S et al (2005) ADC mapping of benign and malignant breast tumors. Magn Reson Med Sci 4:35–42

    Article  PubMed  Google Scholar 

  10. Park MJ, Cha ES, Kang BJ, Ihn YK, Baik JH (2007) The role of diffusion-weighted imaging and the apparent diffusion coefficient (ADC) values for breast tumors. Korean J Radiol 8:390–396

    Article  PubMed  Google Scholar 

  11. Silverstein MJ (2000) Ductal carcinoma in situ of the breast. Annu Rev Med 51:17–32

    Article  PubMed  CAS  Google Scholar 

  12. Partridge SC, Demartini WB, Kurland BF, Eby PR, White SW, Lehman CD (2010) Differential diagnosis of mammographically and clinically occult breast lesions on diffusion-weighted MRI. J Magn Reson Imaging 31:562–570

    Article  PubMed  Google Scholar 

  13. Partridge SC, DeMartini WB, Kurland BF, Eby PR, White SW, Lehman CD (2009) Quantitative diffusion-weighted imaging as an adjunct to conventional breast MRI for improved positive predictive value. AJR Am J Roentgenol 193:1716–1722

    Article  PubMed  Google Scholar 

  14. American College of Radiology (2010) Breast Magnetic Resonance Imaging (MRI) Accreditation Program. Available at: http://www.acr.org/accreditation/Breast-MRI. Accessed February 23, 2011

  15. American College of Radiology (2003) Breast Imaging Reporting and Data System Atlas (BI-RADS Atlas). Reston, VA

  16. Bogner W, Gruber S, Pinker K et al (2009) Diffusion-weighted MR for differentiation of breast lesions at 3.0 T: how does selection of diffusion protocols affect diagnosis? Radiology 253:341–351

    Article  PubMed  Google Scholar 

  17. Silverstein MJ (2003) The University of Southern California/Van Nuys prognostic index for ductal carcinoma in situ of the breast. Am J Surg 186:337–343

    Article  PubMed  Google Scholar 

  18. Esserman LJ, Kumar AS, Herrera AF et al (2006) Magnetic resonance imaging captures the biology of ductal carcinoma in situ. J Clin Oncol 24:4603–4610

    Article  PubMed  Google Scholar 

  19. Jansen SA, Paunesku T, Fan X et al (2009) Ductal carcinoma in situ: X-ray fluorescence microscopy and dynamic contrast-enhanced MR imaging reveals gadolinium uptake within neoplastic mammary ducts in a murine model. Radiology 253:399–406

    Article  PubMed  Google Scholar 

  20. Rubesova E, Grell AS, De Maertelaer V, Metens T, Chao SL, Lemort M (2006) Quantitative diffusion imaging in breast cancer: a clinical prospective study. J Magn Reson Imaging 24:319–324

    Article  PubMed  Google Scholar 

  21. Marini C, Iacconi C, Giannelli M, Cilotti A, Moretti M, Bartolozzi C (2007) Quantitative diffusion-weighted MR imaging in the differential diagnosis of breast lesion. Eur Radiol 17:2646–2655

    Article  PubMed  CAS  Google Scholar 

  22. Kuroki Y, Nasu K, Kuroki S et al (2004) Diffusion-weighted imaging of breast cancer with the sensitivity encoding technique: analysis of the apparent diffusion coefficient value. Magn Reson Med Sci 3:79–85

    Article  PubMed  Google Scholar 

  23. Woodhams R, Matsunaga K, Iwabuchi K et al (2005) Diffusion-weighted imaging of malignant breast tumors: the usefulness of apparent diffusion coefficient (ADC) value and ADC map for the detection of malignant breast tumors and evaluation of cancer extension. J Comput Assist Tomogr 29:644–649

    Article  PubMed  Google Scholar 

  24. Melhem ER, Itoh R, Jones L, Barker PB (2000) Diffusion tensor MR imaging of the brain: effect of diffusion weighting on trace and anisotropy measurements. AJNR Am J Neuroradiol 21:1813–1820

    PubMed  CAS  Google Scholar 

  25. Matsuoka A, Minato M, Harada M et al (2008) Comparison of 3.0-and 1.5-tesla diffusion-weighted imaging in the visibility of breast cancer. Radiat Med 26:15–20

    Article  PubMed  Google Scholar 

  26. Dudink J, Larkman DJ, Kapellou O et al (2008) High b-value diffusion tensor imaging of the neonatal brain at 3 T. AJNR Am J Neuroradiol 29:1966–1972

    Article  PubMed  CAS  Google Scholar 

  27. Yuen S, Yamada K, Goto M, Nishida K, Takahata A, Nishimura T (2009) Microperfusion-induced elevation of ADC is suppressed after contrast in breast carcinoma. J Magn Reson Imaging 29:1080–1084

    Article  PubMed  Google Scholar 

  28. Chen G, Jespersen SN, Pedersen M, Pang Q, Horsman MR, Stodkilde-Jorgensen H (2005) Intravenous administration of Gd-DTPA prior to DWI does not affect the apparent diffusion constant. Magn Reson Imaging 23:685–689

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Habib Rahbar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rahbar, H., Partridge, S.C., Eby, P.R. et al. Characterization of ductal carcinoma in situ on diffusion weighted breast MRI. Eur Radiol 21, 2011–2019 (2011). https://doi.org/10.1007/s00330-011-2140-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-011-2140-4

Keywords

Navigation