Optimising diffusion weighted MRI for imaging metastatic and myeloma bone disease and assessing reproducibility

Abstract

Objectives

To establish normal bone marrow values of apparent diffusion coefficient (ADC) over an age range, compare them with metastatic and myelomatous involvement, to establish reproducibility and to optimise b values.

Methods

The ADCs of bone marrow in 7 volunteers (mean age 29.7 years), 34 volunteers (mean age 63.3 years) and 43 patients with metastatic and myelomatous involvement (mean age 65.5 years) were measured. In 9 volunteers diffusion weighted MRI was repeated within 7 days. b values were derived to optimise contrast between normal and pathological marrow.

Results

The mean ADC of bone marrow in younger volunteers was significantly higher than that of older volunteers. The coefficient of reproducibility was 14.8%. The ADC mean of metastatic and myeloma bone disease was \( {1}0{54} + / - {456} \times {1}0 ^{-6} {\text{mm}}^{2}{\text{s}} ^{-1} \). An ADC threshold of 655 × 10−6 mm2s−1 separated normal and abnormal marrow with a sensitivity and specificity of 90% and 93% respectively. Contrast between normal and abnormal marrow was optimal at b = 1389 smm−2.

Conclusion

The reproducibility of ADC measurements in bone is equivalent to published data for soft tissue with a high sensitivity and specificity for separating abnormal from age matched normal bone marrow. A b value of around 1,400 smm−2 is optimal for imaging bone marrow.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Gauvain KM, McKinstry RC, Mukherjee P et al (2001) Evaluating pediatric brain tumor cellularity with diffusion-tensor imaging. AJR 177:449–454

    PubMed  CAS  Google Scholar 

  2. 2.

    Sugahara T, Korogi Y, Kochi M et al (1999) Usefulness of diffusion-weighted MRI with echo-planar technique in the evaluation of cellularity in gliomas. J Magn Reson Imaging 9:53–60

    PubMed  Article  CAS  Google Scholar 

  3. 3.

    Koh DM, Collins DJ (2007) Diffusion-weighted MRI in the body: applications and challenges in oncology. AJR 188:1622–1635

    PubMed  Article  Google Scholar 

  4. 4.

    Charles-Edwards EM, deSouza NM (2006) Diffusion-weighted magnetic resonance imaging and its application to cancer. Cancer Imaging 6:135–143

    PubMed  Article  Google Scholar 

  5. 5.

    Messiou C, deSouza NM (2010) Diffusion weighted Magnetic Resonance Imaging of metastatic bone disease: A biomarker for treatment response monitoring. Cancer Biomark 6:23–32

    Google Scholar 

  6. 6.

    Nonomumra Y, Yasumoto M, Yoshimura R et al (2001) Relationship between bone marrow cellularity and apparent diffusion coefficient. J Magn Reson Imaging 13:757–760

    Article  Google Scholar 

  7. 7.

    Gutzeit A, Doert A, Froehlich JM et al (2010) Comparison of diffusion-weighted whole body MRI and skeletal scintigraphy for the detection of bone metastases in patients with prostate or breast carcinoma. Skeletal Radiol 39:333–343

    PubMed  Article  Google Scholar 

  8. 8.

    Goudarzi B, Kishimoto R, Komatsu S et al (2010) Detection of bone metastases using diffusion weighted magnetic resonance imaging:comparison with 11C-methionine PET and bone scintigraphy. Magn Reson Imaging 28:372–379

    PubMed  Article  Google Scholar 

  9. 9.

    Luboldt W, Küfer R, Blumstein N et al (2008) Prostate carcinoma: diffusion-weighted imaging as potential alternative to conventional MR and 11C-choline PET/CT for detection of bone metastases. Radiology 249:1017–1025

    PubMed  Article  Google Scholar 

  10. 10.

    Lee KC, Bradley DA, Hussain M et al (2007) A feasibility study evaluating the functional diffusion map as a predictive imaging biomarker for detection of treatment response in a patient with metastatic prostate cancer to the bone. Neoplasia 9:1003–1011

    PubMed  Article  Google Scholar 

  11. 11.

    Lee KC, Sud S, Meyer CR et al (2007) An imaging biomarker of early treatment response in prostate cancer that has metastasized to the bone. Cancer Res 67:3524–3528

    PubMed  Article  CAS  Google Scholar 

  12. 12.

    Reischauer C, Froehlich JM, Koh DM et al (2010) Bone metastases from prostate cancer: assessing treatment response by using diffusion-weighted imaging and functional diffusion maps – initial observations. Radiology 257:523–531

    PubMed  Article  Google Scholar 

  13. 13.

    Reese TG, Heid O, Weisskoff RM, Wedeen VJ (2003) Reduction of eddy-current induced distortion in diffusion MRI using twice refocused spin echo. Magn Reson Med 49:177–182

    PubMed  Article  CAS  Google Scholar 

  14. 14.

    Kingsley P (2006) Introduction to diffusion tensor imaging mathematics: part III. Tensor calculation, noise, simulations and opimisation. Concepts Magn Reson 28A:155–179

    Article  Google Scholar 

  15. 15.

    Koh DM, Blackledge M, Collins D et al (2009) Reproducibility and changes in the apparent diffusion coefficients of solid tumours treated with combretastatin A4 phosphate and bevacizumab in a two-centre phase I clinical trial. Eur Radiol 19:2728–2738

    PubMed  Article  Google Scholar 

  16. 16.

    Hatipoglu GH, Slevi A, Ciliz D, Yuksel E (2007) Quantitative and diffusion MR imaging as a new method to assess osteoporosis. AJNR 28:1934–1937

    PubMed  Article  CAS  Google Scholar 

  17. 17.

    Yeung DK, Wong SY, Griffith JF, Lau EM (2004) Bone marrow diffusion in osteoporosis: evaluation with quantitative MR diffusion imaging. J Magn Reson Imaging 19:222

    PubMed  Article  Google Scholar 

  18. 18.

    Griffith JF, Yeung DKW, Antonio GE et al (2006) Vertebral marrow fat content and diffusion and perfusion indexes in women with varying bone density: MR evaluation. Radiology 241:831–838

    PubMed  Article  Google Scholar 

  19. 19.

    Tang GY, Lv ZW, Tang RB et al (2010) Evaluation of MR spectroscopy and diffusion-weighted MRI in detecting bone marrow changes in postmenopausal women with osteoporosis. Clin Rad 65:377–381

    Article  CAS  Google Scholar 

  20. 20.

    Wilkins BS (1992) Histology of normal haemopoiesis: bone marrow histology. I. J Clin Pathol 45:645–649

    PubMed  Article  CAS  Google Scholar 

  21. 21.

    Griffith JF, Yeung DK, Antonio GE et al (2005) Vertebral bone mineral density, marrow perfusion and fat content in normal and osteoporotic males: analysis using dynamic contrast enhanced NR and MR spectroscopy. Radiology 236:945–951

    PubMed  Article  Google Scholar 

  22. 22.

    Baur A, Huber A, Ertl-Wagner B et al (2001) Diagnostic value of increased diffusion weighting of a steady-state free precession sequence for differentiating acute benign osteoporotic fractures from pathologic vertebral compression fractures. AJNR 22:366–372

    PubMed  CAS  Google Scholar 

  23. 23.

    Herneth AM, Philipp MO, Naude J et al (2002) Vertebral metastases: assessment with apparent diffusion coefficient. Radiology 225:889–894

    PubMed  Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the support received for the CRUK and EPSRC Cancer Imaging Centre in association with the MRC and department of Health (England) grant C1060/A10334 and also NHS funding to the NIHR Biomedical Research Centre.

Author information

Affiliations

Authors

Corresponding author

Correspondence to C. Messiou.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Messiou, C., Collins, D.J., Morgan, V.A. et al. Optimising diffusion weighted MRI for imaging metastatic and myeloma bone disease and assessing reproducibility. Eur Radiol 21, 1713–1718 (2011). https://doi.org/10.1007/s00330-011-2116-4

Download citation

Keywords

  • Bone
  • Neoplasm
  • Metastasis
  • Myeloma
  • Diffusion Magnetic Resonance Imaging