Skip to main content
Log in

Brachial plexus MR imaging: accuracy and reproducibility of DTI-derived measurements and fibre tractography at 3.0-T

  • Musculoskeletal
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objective

To estimate intrastudy, intraobserver and interobserver reproducibility of DTI-derived measurements and fibre tractography (FT) at 3.0 T MR imaging in subjects without known brachial plexus pathology.

Methods

IRB approval and written informed consent were obtained. Forty healthy volunteers underwent bilateral 3.0-T DTI of the brachial plexus. Postprocessing included FT and analysis of fractional anisotropy (FA) and apparent diffusion coefficient (ADC). Four authors performed postprocessing and analysis independently and in different sessions at baseline and after 4 weeks. Non-parametric tests and Bland-Altman statistics were used.

Results

Minimum and maximum percent variability were 6% and 20% for FA (85%–93% reproducibility). For ADC minimum and maximum percent variability were 6% and 18% (86%–97% reproducibility). Quality of fibre tract was rated equal in 80% and slightly different in 20% of subjects. Minimum detectable differences between limb were 37% for FA and 32% for ADC. Intra- and inter-observer agreement were good. Evaluating the combined influence of the observer and of the repeated measurements the reproducibility was 81–92%.

Conclusion

DTI of brachial plexus nerves is reliable. The healthy contralateral side can be used as an internal control considering that changes in FA and ADC values of less that 37% and 32% will not be clinically detectable with confidence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

DWI:

Diffusion-weighted imaging

DTI:

Diffusion Tensor Imaging

MR:

Magnetic Resonance

FA:

Fractional Anisotropy

ADC:

Apparent Diffusion Coefficient

ROI:

Region of Interest

DTI-FT:

Fibre Tracking (with Diffusion Tensor Imaging)

FOV:

Field of View

SAR:

Specific Absorption Rate

References

  1. Mori S, van Zijl PC (2002) Fiber tracking: principles and strategies: a technical review. NMR Biomed 15:468–480

    Article  PubMed  Google Scholar 

  2. Mori S, Barker PB (1999) Diffusion magnetic resonance imaging: its principle and applications. Anat Rec 257:102–109

    Article  PubMed  CAS  Google Scholar 

  3. Bammer R (2003) Basic principles of diffusion-weighted imaging. Eur J Radiol 45:169–184

    Article  PubMed  Google Scholar 

  4. Bammer R, Acar B, Moseley ME (2003) In vivo MR tractography using diffusion imaging. Eur J Radiol 45:223–234

    Article  PubMed  Google Scholar 

  5. Nucifora PG, Verma R, Lee SK, Melhem ER (2007) Diffusion-tensor MR imaging and tractography: exploring brain microstructure and connectivity. Radiology 245:367–384

    Article  PubMed  Google Scholar 

  6. Basser P, Mattiello J, LeBihan D (1994) MR diffusion tensor spectroscopy and imaging. Biophys J 66:259–267

    Article  PubMed  CAS  Google Scholar 

  7. Toosy AT, Werring DJ, Orrell RW et al (2003) Diffusion tensor imaging detects corticospinal tract involvement at multiple levels in amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 74:1250–1257

    Article  PubMed  CAS  Google Scholar 

  8. Conturo TE, Lori NF, Cull TS et al (1999) Tracking neuronal fiber pathways in the living human brain. Proc Natl Acad Sci USA 96:10422–10427

    Article  PubMed  CAS  Google Scholar 

  9. Renoux J, Facon D, Fillard P et al (2006) MR diffusion tensor imaging and fiber tracking in inflammatory diseases of the spinal cord. AJNR Am J Neuroradiol 27:1947–1951

    PubMed  CAS  Google Scholar 

  10. Demir A, Ries M, Moonen CT et al (2003) Diffusion-weighted MR imaging with apparent diffusion coefficient and apparent diffusion tensor maps in cervical spondylotic myelopathy. Radiology 229:37–43

    Article  PubMed  Google Scholar 

  11. Hori M, Okubo T, Aoki S et al (2006) Line scan diffusion tensor MRI at low magnetic field strength: feasibility study of cervical spondylotic myelopathy in an early clinical stage. J Magn Reson Imaging 23:183–188

    Article  PubMed  Google Scholar 

  12. Mamata H, Jolesz FA, Maier SE (2005) Apparent diffusion coefficient and fractional anisotropy in spinal cord: age and cervical spondylosis-related changes. J Magn Reson Imaging 22:38–43

    Article  PubMed  Google Scholar 

  13. Budzik JF, Balbi V, Le Thuc V, Duhamel A, Assaker R, Cotten A (2010) Diffusion tensor imaging and fibre tracking in cervical spondylotic myelopathy. doi:10.1007/s00330-010-1927-z

  14. Xiangshui M, Xiangjun C, Xiaoming Z et al (2010) 3 T magnetic resonance diffusion tensor imaging and fibre tracking in cervical myelopathy. Clin Radiol 65:465–473

    Article  PubMed  CAS  Google Scholar 

  15. Vargas MI, Viallon M, Nguyen D, Delavelle J, Becker M (2010) Diffusion tensor imaging (DTI) and tractography of the brachial plexus: feasibility and initial experience in neoplastic conditions. Neuroradiology 52:237–245

    Article  PubMed  Google Scholar 

  16. Kabakci N, Gurses B, Firat Z et al (2007) Diffusion tensor imaging and tractography of median nerve: normative diffusion values. AJR Am J Roentgenol 189:923–927

    Article  PubMed  Google Scholar 

  17. Andreisek G, White LM, Kassner A, Sussman MS (2010) Evaluation of diffusion tensor imaging and fiber tractography of the median nerve: preliminary results on intrasubject variability and precision of measurements. AJR Am J Roentgenol 194:W65–W72

    Article  PubMed  Google Scholar 

  18. Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 33:159–174

    Article  PubMed  CAS  Google Scholar 

  19. Bland JM, Altman DG (1996) Measurement error proportional to the mean. BMJ 313:106

    PubMed  CAS  Google Scholar 

  20. Bland JM, Altman DG (1996) Measurement error. BMJ 313:744

    PubMed  CAS  Google Scholar 

  21. Padhani AR, Hayes C, Landau S, Leach MO (2002) Reproducibility of quantitative dynamic MRI of normal human tissues. NMR Biomed 15:143–153

    Article  PubMed  Google Scholar 

  22. Di Leo G, Di Terlizzi F, Flor N, Morganti A, Sardanelli F (2010) Measurement of renal volume using respiratory-gated MRI in subjects without known kidney disease: intraobserver, interobserver, and interstudy reproducibility. Eur J Radiol. doi:10.1016/j.ejrad.2010.09.005

    Google Scholar 

  23. Farrell JA, Landman BA, Jones CK, Smith SA, Prince JL, van Zijl PC et al (2007) Effects of signal-to-noise ratio on the accuracy and reproducibility of diffusion tensor imaging-derived fractional anisotropy, mean diffusivity, and principal eigenvector measurements at 1.5 T. J Magn Reson Imaging 26:756–767

    Article  PubMed  Google Scholar 

  24. Bankier AA, Levine D, Halpern EF, Kressel HY (2010) Consensus interpretation in imaging research: is there a better way? Radiology 257:14–17

    Article  PubMed  Google Scholar 

  25. Braithwaite AC, Dale BM, Boll DT, Merkle EM (2009) Short- and midterm reproducibility of apparent diffusion coefficient measurements at 3.0-T diffusion-weighted imaging of the abdomen. Radiology 250:459–465

    Article  PubMed  Google Scholar 

  26. Martinoli C, Gandolfo N, Miguel Perez M, Klauser A, Palmieri F, Padua L et al (2010) Brachial plexus and nerves about the shoulder. Semin Musculoskelet Radiol 14:523–546

    Article  PubMed  Google Scholar 

  27. Tagliafico A, Altafini L, Garello I, Marchetti A, Gennaro S, Martinoli C (2010) Traumatic neuropathies: spectrum of imaging findings and postoperative assessment. Semin Musculoskelet Radiol 14:512–522

    Article  PubMed  Google Scholar 

  28. Balbi V, Budzik JF, Duhamel A, Bera-Louville A, Le Thuc V (2011) Tractography of lumbar nerve roots: initial results. Eur Radiol. doi:10.1007/s00330-010-2049-3

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Tagliafico.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tagliafico, A., Calabrese, M., Puntoni, M. et al. Brachial plexus MR imaging: accuracy and reproducibility of DTI-derived measurements and fibre tractography at 3.0-T. Eur Radiol 21, 1764–1771 (2011). https://doi.org/10.1007/s00330-011-2100-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-011-2100-z

Keywords

Navigation