Advertisement

European Radiology

, Volume 20, Issue 12, pp 2806–2816 | Cite as

Toward cardiovascular MRI at 7 T: clinical needs, technical solutions and research promises

  • Thoralf Niendorf
  • Daniel K. Sodickson
  • Gabriele A. Krombach
  • Jeanette Schulz-Menger
Cardiac

Abstract

Objective

To consider potential clinical needs, technical solutions and research promises of ultrahigh-field strength cardiovascular MR (CMR).

Methods

A literature review is given, surveying advantages and disadvantages of CMR at ultrahigh fields (UHF). Key concepts, emerging technologies, practical considerations and applications of UHF CMR are provided. Examples of UHF CMR imaging strategies and their added value are demonstrated, including the numerous unsolved problems. A concluding section explores future directions in UHF CMR.

Results

UHF CMR can be regarded as one of the most challenging MRI applications. Image quality achievable at UHF is not always exclusively defined by signal-to-noise considerations. Some of the inherent advantages of UHF MRI are offset by practical challenges. But UHF CMR can boast advantages over its kindred lower field counterparts by trading the traits of high magnetic fields for increased temporal and/or spatial resolution.

Conclusions

CMR at ultrahigh-field strengths is a powerful motivator, since speed and signal may be invested to overcome the fundamental constraints that continue to hamper traditional CMR. If practical challenges can be overcome, UHF CMR will help to open the door to new approaches for basic science and clinical research.

Keywords

Cardiovascular MRI Ultrahigh-field imaging Multiple transmit MR technology Parallel imaging 

Notes

Acknowledgements

The authors gratefully acknowledge Mark E. Ladd and Stefan Maderwald (Erwin Hahn Institute, Essen, Germany), Saskia van Elderen and Andrew Webb (Leiden University Medical Center, Leiden, The Netherlands), Thibaut deGeyer d’Orth, Matthias Dieringer, Tobias Frauenrath, Bernd Ittermann, Tomasz Lindel, Fabian Hezel, Florian von Knobellsdorf, Wolfgang Renz and Frank Seiffert (Berlin Ultrahigh Field Facility, Berlin, Germany), all of whom kindly contributed examples of their pioneering work or other valuable assistance.

References

  1. 1.
    Niendorf T, Sodickson DK (2008) Highly accelerated cardiovascular MR imaging using many channel technology: concepts and clinical applications. Eur Radiol 18:87–102CrossRefPubMedGoogle Scholar
  2. 2.
    Kelle S, Nagel E (2007) Cardiovascular MRI at 3 T. Eur Radiol 17(6):F42–F47CrossRefPubMedGoogle Scholar
  3. 3.
    Gutberlet M, Noeske R, Schwinge K et al (2006) Comprehensive cardiac magnetic resonance imaging at 3.0 Tesla: feasibility and implications for clinical applications. Invest Radiol 41:154–167CrossRefPubMedGoogle Scholar
  4. 4.
    Gutberlet M, Schwinge K, Freyhardt P et al (2005) Influence of high magnetic field strengths and parallel acquisition strategies on image quality in cardiac 2D CINE magnetic resonance imaging: comparison of 1.5 T vs. 3.0 T. Eur Radiol 15:1586–1597CrossRefPubMedGoogle Scholar
  5. 5.
    Vaughan JT, Snyder CJ, DelaBarre LJ et al (2009) Whole-body imaging at 7 T: preliminary results. Magn Reson Med 61:244–248CrossRefPubMedGoogle Scholar
  6. 6.
    Snyder CJ, DelaBarre L, Metzger GJ et al (2009) Initial results of cardiac imaging at 7 Tesla. Magn Reson Med 61:517–524CrossRefPubMedGoogle Scholar
  7. 7.
    Frauenrath T, Hezel F, Heinrichs U et al (2009) Feasibility of cardiac gating free of interference with electro-magnetic fields at 1.5 Tesla, 3.0 Tesla and 7.0 Tesla using an MR-stethoscope. Invest Radiol 44:539–547CrossRefPubMedGoogle Scholar
  8. 8.
    van Elderen SG, Versluis MJ, Webb AG et al (2009) Initial results on in vivo human coronary MR angiography at 7 T. Magn Reson Med 62:1379–1384CrossRefPubMedGoogle Scholar
  9. 9.
    Versluis MJ, Tsekos N, Smith NB et al (2009) Simple RF design for human functional and morphological cardiac imaging at 7tesla. J Magn Reson 200:161–166CrossRefPubMedGoogle Scholar
  10. 10.
    Maderwald S, Orzada S, Schäfer LC, et al. (2009) Seven-Tesla human in vivo cardiac imaging with an 8-channel transmit/receive array. Proc Intl Soc Mag Reson Med 17:821; Honolulu, Hawaii, USAGoogle Scholar
  11. 11.
    Hendel RC, Patel MR, Kramer CM et al (2006) ACCF/ACR/SCCT/SCMR/ASNC/NASCI/SCAI/SIR 2006 appropriateness criteria for cardiac computed tomography and cardiac magnetic resonance imaging: a report of the American College of Cardiology Foundation Quality Strategic Directions Committee Appropriateness Criteria Working Group, American College of Radiology, Society of Cardiovascular Computed Tomography, Society for Cardiovascular Magnetic Resonance, American Society of Nuclear Cardiology, North American Society for Cardiac Imaging, Society for Cardiovascular Angiography and Interventions, and Society of Interventional Radiology. J Am Coll Cardiol 48:1475–1497CrossRefPubMedGoogle Scholar
  12. 12.
    Zagrosek A, Abdel-Aty H, Boye P et al (2009) Cardiac magnetic resonance monitors reversible and irreversible myocardial injury in myocarditis. JACC Imaging 2:131–138CrossRefGoogle Scholar
  13. 13.
    Kwong RY, Chan AK, Brown KA et al (2006) Impact of unrecognized myocardial scar detected by cardiac magnetic resonance imaging on event-free survival in patients presenting with signs or symptoms of coronary artery disease. Circulation 113:2733–2743CrossRefPubMedGoogle Scholar
  14. 14.
    Gutberlet M, Spors B, Thoma T et al (2008) Suspected chronic myocarditis at cardiac MR: diagnostic accuracy and association with immunohistologically detected inflammation and viral persistence. Radiology 246:401–409CrossRefPubMedGoogle Scholar
  15. 15.
    Friedrich MG, Strohm O, Schulz-Menger J et al (1998) Contrast media-enhanced magnetic resonance imaging visualizes myocardial changes in the course of viral myocarditis. Circulation 97:1802–1809PubMedGoogle Scholar
  16. 16.
    Wagner A, Mahrholdt H, Holly TA et al (2003) Contrast-enhanced MRI and routine single photon emission computed tomography (SPECT) perfusion imaging for detection of subendocardial myocardial infarcts: an imaging study. Lancet 361:374–379CrossRefPubMedGoogle Scholar
  17. 17.
    Mahrholdt H, Wagner A, Deluigi CC et al (2006) Presentation, patterns of myocardial damage, and clinical course of viral myocarditis. Circulation 114:1581–1590CrossRefPubMedGoogle Scholar
  18. 18.
    Abdel-Aty H, Boye P, Zagrosek A et al (2005) Diagnostic performance of cardiovascular magnetic resonance in patients with suspected acute myocarditis: comparison of different approaches. J Am Coll Cardiol 45:1815–1822CrossRefPubMedGoogle Scholar
  19. 19.
    Cooper LT Jr (2009) Myocarditis. N Engl J Med 360:1526–1538CrossRefPubMedGoogle Scholar
  20. 20.
    Zhu Y (2004) Parallel excitation with an array of transmit coils. Magn Reson Med 51:775–784CrossRefPubMedGoogle Scholar
  21. 21.
    Ullmann P, Junge S, Wick M et al (2005) Experimental analysis of parallel excitation using dedicated coil setups and simultaneous RF transmission on multiple channels. Magn Reson Med 54:994–1001CrossRefPubMedGoogle Scholar
  22. 22.
    Katscher U, Bornert P (2006) Parallel RF transmission in MRI. NMR Biomed 19:393–400CrossRefPubMedGoogle Scholar
  23. 23.
    Katscher U, Bornert P, Leussler C et al (2003) Transmit SENSE. Magn Reson Med 49:144–150CrossRefPubMedGoogle Scholar
  24. 24.
    Lattanzi R, Sodickson DK, Grant AK et al (2009) Electrodynamic constraints on homogeneity and radiofrequency power deposition in multiple coil excitations. Magn Reson Med 61:315–334CrossRefPubMedGoogle Scholar
  25. 25.
    Schneider JT, Kalayciyan R, Haas M, et al (2009) Inner-Volume Imaging Using Three-Dimensional Parallel Excitation: Simulation and First Experimental Results. Third International Workshop on Parallel MRI Santa Cruz, CA, USA Google Scholar
  26. 26.
    Zelinski AC, Angelone LM, Goyal VK et al (2008) Specific absorption rate studies of the parallel transmission of inner-volume excitations at 7 T. J Magn Reson Imaging 28:1005–1018CrossRefPubMedGoogle Scholar
  27. 27.
    Van de Moortele PF, Akgun C, Adriany G et al (2005) B(1) destructive interferences and spatial phase patterns at 7 T with a head transceiver array coil. Magn Reson Med 54:1503–1518CrossRefPubMedGoogle Scholar
  28. 28.
    Vaughan JT, Adriany G, Snyder CJ et al (2004) Efficient high-frequency body coil for high-field MRI. Magn Reson Med 52:851–859CrossRefPubMedGoogle Scholar
  29. 29.
    Maderwald S, Orzada S, Schäfer LC, et al. (2009) Seven-Tesla human in vivo cardiac imaging with an eight-channel transmit/receive array. Proc Intl Soc Mag Reson Med 17 821 Honolulu, Hawaii, USAGoogle Scholar
  30. 30.
    Dieringer MA, Renz W, Lindel T, et al (2010) A four-channel TX/RX surface coil for 7.0 T: design, optimization and application for cardiac function imaging. Proc Intl Soc Mag Reson Med 18:3583; Stockholm, SEGoogle Scholar
  31. 31.
    Renz W, Lindel T, Dieringer M, et al. (2010) A 8 channel TX/RX decoupled loop array for cardiac/body imaging at 7 T. Proc Intl Soc Mag Reson Med 18:1299; Stockholm, SEGoogle Scholar
  32. 32.
    Lanzer P, Barta C, Botvinick EH et al (1985) ECG-synchronized cardiac MR imaging: method and evaluation. Radiology 155:681–686PubMedGoogle Scholar
  33. 33.
    Kugel H, Bremer C, Puschel M et al (2003) Hazardous situation in the MR bore: induction in ECG leads causes fire. Eur Radiol 13:690–694PubMedGoogle Scholar
  34. 34.
    Shellock FG, Kanal E (1996) Burns associated with the use of monitoring equipment during MR procedures. J Magn Reson Imaging 6:271–272CrossRefPubMedGoogle Scholar
  35. 35.
    Shellock FG, Crues JV (2004) MR procedures: biologic effects, safety, and patient care. Radiology 232:635–652CrossRefPubMedGoogle Scholar
  36. 36.
    Stralka JP, Bottomley PA (2007) A prototype RF dosimeter for independent measurement of the average specific absorption rate (SAR) during MRI. J Magn Reson Imaging 26:1296–1302CrossRefPubMedGoogle Scholar
  37. 37.
    Stecco A, Saponaro A, Carriero A (2007) Patient safety issues in magnetic resonance imaging: state of the art. Radiol Med 112:491–508CrossRefPubMedGoogle Scholar
  38. 38.
    Fischer SE, Wickline SA, Lorenz CH (1999) Novel real-time R-wave detection algorithm based on the vectorcardiogram for accurate gated magnetic resonance acquisitions. Magn Reson Med 42:361–370CrossRefPubMedGoogle Scholar
  39. 39.
    Stuber M, Botnar RM, Fischer SE et al (2002) Preliminary report on in vivo coronary MRA at 3 Tesla in humans. Magn Reson Med 48:425–429CrossRefPubMedGoogle Scholar
  40. 40.
    Frauenrath T, Niendorf T, Kob M (2008) Acoustic method for synchronization of Magnetic Resonance Imaging (MRI). Acta Acustica united with Acustica 148-155Google Scholar
  41. 41.
    Becker M, Frauenrath T, Hezel F et al (2010) Comparison of left ventricular function assessment using phonocardiogram- and electrocardiogram-triggered 2D SSFP CINE MR imaging at 1.5 T and 3.0 T. Eur Radiol 20:1344–1355CrossRefPubMedGoogle Scholar
  42. 42.
    Maderwald S, Nassenstein K, Orzada S, et al. (2010) MR imaging of cardiac wall-motion at 1.5 T and 7 T: SNR and CNR comparison. Proc Intl Soc Mag Reson Med 18:1299; Stockholm, SEGoogle Scholar
  43. 43.
    Brants A, Versluis M, de Roos A, et al (2010) Quantitative comparison of left ventricular cardiac volume, mass and function obtained at 7 Tesla with “gold standard” values at 1.5 Tesla. Proc. Intl. Soc. Mag. Reson. Med. 18:1299; Stockholm, SEGoogle Scholar
  44. 44.
    ICNIRP (2009) Amendment to the ICNIRP “Statement on Medical Magnetic Resonance (MR) Procedures: Protection of Patients”. Health Phys 97:259–261CrossRefGoogle Scholar
  45. 45.
    von Knobelsdorff-Brenkenhoff F, Frauenrath T, Prothmann M, et al. (2010) Cardiac chamber quantification using magnetic resonance imaging at 7 Tesla-a pilot study. Eur Radiol. doi: 10.1007/s00330-010-1888-2
  46. 46.
    Frydrychowicz A, Arnold R, Harloff A et al (2008) Images in cardiovascular medicine. In vivo 3-dimensional flow connectivity mapping after extracardiac total cavopulmonary connection. Circulation 118:e16–e17CrossRefPubMedGoogle Scholar
  47. 47.
    van Elderen SGC, Versluis MJ, Westenberg JJM, et al (2010) Coronary magnetic resonance angiography at 7 Tesla: a quantitative comparison with results at 3 Tesla. J Cardiovasc Magn Reson: vol 12 O88Google Scholar
  48. 48.
    Caravan P, Ellison JJ, McMurry TJ et al (1999) Gadolinium(III) chelates as MRI contrast agents: structure, dynamics, and applications. Chem Rev 99:2293–2352CrossRefPubMedGoogle Scholar
  49. 49.
    Modell B, Khan M, Darlison M et al (2008) Improved survival of thalassaemia major in the UK and relation to T2* cardiovascular magnetic resonance. J Cardiovasc Magn Reson 10:42CrossRefPubMedGoogle Scholar

Copyright information

© European Society of Radiology 2010

Authors and Affiliations

  • Thoralf Niendorf
    • 1
    • 2
  • Daniel K. Sodickson
    • 3
  • Gabriele A. Krombach
    • 4
  • Jeanette Schulz-Menger
    • 1
    • 2
    • 5
  1. 1.Berlin Ultrahigh Field Facility (BUFF)Max Delbrueck Center for Molecular MedicineBerlinGermany
  2. 2.Experimental and Clinical Research Center (ECRC), Charité Campus BuchHumboldt UniversityBerlinGermany
  3. 3.Department of Radiology, Center for Biomedical ImagingNew York University School of MedicineNew YorkUSA
  4. 4.Department of Diagnostic RadiologyUniverstitätsklinikum Giessen und MarburgGiessenGermany
  5. 5.HELIOS-Klinikum Berlin BuchBerlinGermany

Personalised recommendations