Skip to main content
Log in

The culprit lesion and its consequences: combined visualization of the coronary arteries and delayed myocardial enhancement in dual-source CT: a pilot study

  • Cardiac
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objective:

To assess combined analysis of coronary arteries and delayed myocardial contrast enhancement based on co-registration of coronary CT angiography and late-phase CT and automatic segmentation.

Materials and methods:

Co-registration and late enhancement segmentation were applied to coronary CT angiography and late-phase CT images from six pigs with acute myocardial infarction (MI) and six patients with chronic MI. MI size was quantified by manual delineation, the established 3SD method, and a new mixture model approach. Correspondence between coronary artery lesions and MI was assessed visually from fused segmentation results.

Results:

Co-registration was successful in all cases. There was substantial agreement in the number of segments diagnosed with MI, comparing manual delineation and the mixture model for animal (κ = 0.839) and patient studies (κ = 0.770). There were no significant differences between the two methods (P > 0.05). In patients there was a discrepancy between the segmental distribution of MI and empirical coronary artery perfusion in 10/96 segments when compared with the true coronary branching pattern.

Conclusion:

The mixture model approach is well suited for automated assessment of MI size from late-phase cardiac CT. Fusion imaging eliminates the need for empirical knowledge of the anatomical relationship between the coronary artery lesion and the area of myocardial ischaemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Orn S, Manhenke C, Anand IS, Squire I, Nagel E, Edvardsen T, Dickstein K (2007) Effect of left ventricular scar size, location, and transmurality on left ventricular remodeling with healed myocardial infarction. Am J Cardiol 99:1109–1114

    Article  PubMed  Google Scholar 

  2. Choi KM, Kim RJ, Gubernikoff G, Vargas JD, Parker M, Judd RM (2001) Transmural extent of acute myocardial infarction predicts long-term improvement in contractile function. Circulation 104:1101–1107

    Article  CAS  PubMed  Google Scholar 

  3. Kim RJ, Wu E, Rafael A, Chen EL, Parker MA, Simonetti O, Klocke FJ, Bonow RO, Judd RM (2000) The use of contrast-enhanced magnetic resonance imaging to identify reversible myocardial dysfunction. N Engl J Med 343:1445–1453

    Article  CAS  PubMed  Google Scholar 

  4. Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK, Pennell DJ, Rumberger JA, Ryan T, Verani MS, American Heart Association Writing Group on Myocardial Segmentation and Registration for Cardiac Imaging (2002) Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: a statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation 105:539–542

    Article  PubMed  Google Scholar 

  5. Ortiz-Pérez JT, Rodríguez J, Meyers SN, Lee DC, Davidson C, Wu E (2008) Correspondence between the 17-segment model and coronary arterial anatomy using contrast-enhanced cardiac magnetic resonance imaging. JACC Cardiovasc Imaging 1:282–293

    Article  PubMed  Google Scholar 

  6. Baumüller S, Leschka S, Desbiolles L, Stolzmann P, Scheffel H, Seifert B, Marincek B, Alkadhi H (2009) Dual-source versus 64-section CT coronary angiography at lower heart rates: comparison of accuracy and radiation dose. Radiology 253:56–64

    Article  PubMed  Google Scholar 

  7. Mühlenbruch G, Seyfarth T, Soo CS, Pregalathan N, Mahnken AH (2007) Diagnostic value of 64-slice multi-detector row cardiac CTA in symptomatic patients. Eur Radiol 17:603–609

    Article  PubMed  Google Scholar 

  8. Scheffel H, Alkadhi H, Plass A, Vachenauer R, Desbiolles L, Gaemperli O, Schepis T, Frauenfelder T, Schertler T, Husmann L, Grunenfelder J, Genoni M, Kaufmann PA, Marincek B, Leschka S (2006) Accuracy of dual-source CT coronary angiography: first experience in a high pre-test probability population without heart rate control. Eur Radiol 16:2739–2747

    Article  PubMed  Google Scholar 

  9. Mahnken AH, Koos R, Katoh M, Wildberger JE, Spuentrup E, Buecker A, Günther RW, Kühl HP (2005) Assessment of myocardial viability in reperfused acute myocardial infarction using 16-slice computed tomography in comparison to magnetic resonance imaging. J Am Coll Cardiol 45:2042–2047

    Article  PubMed  Google Scholar 

  10. Brodoefel H, Klumpp B, Reimann A, Ohmer M, Fenchel M, Schroeder S, Miller S, Claussen C, Kopp AF, Scheule AM (2007) Late myocardial enhancement assessed by 64-MSCT in reperfused porcine myocardial infarction: diagnostic accuracy of low-dose CT protocols in comparison with magnetic resonance imaging. Eur Radiol 17:475–483

    Article  CAS  PubMed  Google Scholar 

  11. Buecker A, Katoh M, Krombach GA, Spuentrup E, Bruners P, Günther RW, Niendorf T, Mahnken AH (2005) A feasibility study of contrast enhancement of acute myocardial infarction in multislice computed tomography: comparison with magnetic resonance imaging and gross morphology in pigs. Invest Radiol 40:700–704

    Article  PubMed  Google Scholar 

  12. Mahnken AH, Bruners P, Kinzel S, Katoh M, Mühlenbruch G, Günther RW, Wildberger JE (2007) Late-phase MSCT in the different stages of myocardial infarction: animal experiments. Eur Radiol 17:2310–2317

    Article  PubMed  Google Scholar 

  13. Ruzsics B, Surányi P, Kiss P, Brott BC, Singh SS, Litovsky S, Aban I, Lloyd SG, Simor T, Elgavish GA, Gupta H (2008) Automated multidetector computed tomography evaluation of subacutely infarcted myocardium. J Cardiovasc Comput Tomogr 2:26–32

    Article  PubMed  Google Scholar 

  14. Mahnken AH, Bruners P, Bornikoel CM, Krämer N, Günther RW (2009) Assessment of myocardial edema by computed tomography in myocardial infarction. JACC Cardiovasc Imaging 2:1167–1174

    Article  PubMed  Google Scholar 

  15. Mahnken AH, Jost G, Bruners P, Sieber M, Seidensticker PR, Günther RW, Pietsch H (2009) Multidetector computed tomography (MDCT) evaluation of myocardial viability: intraindividual comparison of monomeric vs. dimeric contrast media in a rabbit model. Eur Radiol 19:290–297

    Article  PubMed  Google Scholar 

  16. Schenk A, Prause G, Peitgen HO (2000) Efficient semiautomatic segmentation of 3D objects in medical objects. Proceedings of the third international conference on medical image computing and computer-assisted intervention 1935:186–195

  17. Kolipaka A, Chatzimavroudis GP, White RD, O'Donnell TP, Setser RM (2005) Segmentation of non-viable myocardium in delayed enhancement magnetic resonance images. Int J Cardiovasc Imaging 21:303–311

    Article  PubMed  Google Scholar 

  18. Reimer KA, Jennings RB (1979) The “wavefront phenomenon” of myocardial ischemic cell death, II: transmural progression of necrosis within the framework of ischemic bed size (myocardium at risk) and collateral flow. Lab Invest 40:633–644

    CAS  PubMed  Google Scholar 

  19. Hunold P, Schlosser T, Vogt FM, Eggebrecht H, Schmermund A, Bruder O, Schüler WO, Barkhausen J (2005) Myocardial late enhancement in contrast-enhanced cardiac MRI: distinction between infarction scar and non-infarction-related disease. AJR Am J Roentgenol 184:1420–1426

    PubMed  Google Scholar 

  20. Kim D, Park D (2001) Fast iterative computation of Gaussian mixture parameters and optimal image segmentation. Int J Syst Sci 32:1075–1087

    Article  Google Scholar 

  21. Hennemuth BT, Fritz D, Kuhnel C, Bock S, Rinck D, Scheuering M, Peitgen HO (2005) One-click coronary tree segmentation in CT angiographic images. Int Congr Ser 1281:317–321. doi:10.1016/j.ics.2005.03.318

    Article  Google Scholar 

  22. Dice LR (1945) Measures of the amount of ecologic association between species. Ecology 26:297–302

    Article  Google Scholar 

  23. Meluzín J, Cerný J, Frélich M, Stetka F, Spinarová L, Popelová J, Stípal R (1998) Prognostic value of the amount of dysfunctional but viable myocardium in revascularized patients with coronary artery disease and left ventricular dysfunction. Investigators of this multicenter study. J Am Coll Cardiol 32:912–920

    Article  PubMed  Google Scholar 

  24. Wagner A, Mahrholdt H, Holly TA, Elliott MD, Regenfus M, Parker M, Klocke FJ, Bonow RO, Kim RJ, Judd RM (2003) Contrast-enhanced MRI and routine single photon emission computed tomography (SPECT) perfusion imaging for detection of subendocardial myocardial infarcts: an imaging study. Lancet 361:374–379

    Article  PubMed  Google Scholar 

  25. Nieman K, Shapiro MD, Ferencik M, Nomura CH, Abbara S, Hoffmann U, Gold HK, Jang IK, Brady TJ, Cury RC (2008) Reperfused myocardial infarction: contrast-enhanced 64-section CT in comparison to MR imaging. Radiology 247:49–56

    Article  PubMed  Google Scholar 

  26. Hennemuth A, Seeger A, Friman O, Miller S, Klumpp B, Oeltze S, Peitgen HO (2008) A comprehensive approach to the analysis of contrast enhanced cardiac MR images. IEEE Trans Med Imaging 27:1592–1610

    Article  PubMed  Google Scholar 

  27. Mahnken AH, Bruners P, Mühlenbruch G, Emmerich M, Hohl C, Günther RW, Wildberger JE (2007) Low tube voltage improves computed tomography imaging of delayed myocardial contrast enhancement in an experimental acute myocardial infarction model. Invest Radiol 42:123–129

    Article  PubMed  Google Scholar 

  28. Baks T, Cademartiri F, Moelker AD, Weustink AC, van Geuns RJ, Mollet NR, Krestin GP, Duncker DJ, de Feyter PJ (2006) Multislice computed tomography and magnetic resonance imaging for the assessment of reperfused acute myocardial infarction. J Am Coll Cardiol 48:144–152

    Article  PubMed  Google Scholar 

  29. Pereztol-Valdés O, Candell-Riera J, Santana-Boado C, Angel J, Aguadé-Bruix S, Castell-Conesa J, Garcia EV, Soler-Soler J (2005) Correspondence between left ventricular 17 myocardial segments and coronary arteries. Eur Heart J 26:2637–2643

    Article  PubMed  Google Scholar 

  30. Thilo C, Schoepf UJ, Gordon L, Chiaramida S, Serguson J, Costello P (2009) Integrated assessment of coronary anatomy and myocardial perfusion using a retractable SPECT camera combined with 64-slice CT: initial experience. Eur Radiol 19:845–856

    Article  PubMed  Google Scholar 

  31. Fricke H, Elsner A, Weise R, Bolte M, van den Hoff J, Burchert W, Domik G, Fricke E (2009) Quantitative myocardial perfusion PET combined with coronary anatomy derived from CT angiography: validation of a new fusion and visualization software. Z Med Phys 19:182–188

    PubMed  Google Scholar 

  32. White RD, Setser RM (2002) Integrated approach to evaluating coronary artery disease and ischemic heart disease. Am J Cardiol 90:49L–55L

    Article  PubMed  Google Scholar 

  33. Setser RM, O'Donnell TP, Smedira NG, Sabik JF, Halliburton SS, Stillman AE, White RD (2005) Coregistered MR imaging myocardial viability maps and multi-detector row CT coronary angiography displays for surgical revascularization planning: initial experience. Radiology 237:465–473

    Article  PubMed  Google Scholar 

  34. Gerber BL, Belge B, Legros GJ, Lim P, Poncelet A, Pasquet A, Gisellu G, Coche E, Vanoverschelde JL (2006) Characterization of acute and chronic myocardial infarcts by multidetector computed tomography: comparison with contrast-enhanced magnetic resonance. Circulation 113:823–833

    Article  PubMed  Google Scholar 

  35. Lardo AC, Cordeiro MA, Silva C, Amado LC, George RT, Saliaris AP, Schuleri KH, Fernandes VR, Zviman M, Nazarian S, Halperin HR, Wu KC, Hare JM, Lima JA (2006) Contrast-enhanced multidetector computed tomography viability imaging after myocardial infarction: characterization of myocyte death, microvascular obstruction, and chronic scar. Circulation 113:394–404

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas H. Mahnken.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mahnken, A.H., Bruners, P., Friman, O. et al. The culprit lesion and its consequences: combined visualization of the coronary arteries and delayed myocardial enhancement in dual-source CT: a pilot study. Eur Radiol 20, 2834–2843 (2010). https://doi.org/10.1007/s00330-010-1864-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-010-1864-x

Keywords

Navigation