An exploratory pilot study into the association between microcirculatory parameters derived by MRI-based pharmacokinetic analysis and glucose utilization estimated by PET-CT imaging in head and neck cancer



To examine the feasibility of deriving quantitative microcirculatory parameters and to investigate the relationship between vascular and metabolic characteristics of head and neck tumours in vivo, using dynamic contrast-enhanced (DCE) MRI and fluorodeoxyglucose (FDG) PET imaging.


Twenty-seven patients with primary squamous cell carcinoma (SCCA) underwent DCE-MRI and combined PET/CT imaging. DCE-MRI data were post-processed by using commercially available software. Transfer constant (K trans), extravascular extracellular blood volume (v e), transfer constant from the extracellular extravascular space to plasma (k ep) and iAUC (initial area under the signal intensity–time curve) were calculated. 3D static PET data were acquired and standardised uptake values (SUV) calculated.


All microcirculatory parameters in tumours were higher than in normal muscle tissue (P ≤ 0.0019). Significant correlations were shown between k ep and K trans (ρ = 0.77), v e and k ep (ρ = −0.7), and iAUC and v e (ρ = 0.53). Significant correlations were observed for SUVmean and v e as well as iAUC (ρ = 0.42 and ρ = 0.66, respectively). SUVmax was significantly correlated with iAUC (ρ = 0.69).


The demonstrated relationships between vascular and metabolic characteristics of primary SCCA imply a complex interaction between vascular delivery characteristics and tumour metabolism. The lack of correlation between SUV and K trans/k ep suggests that both diagnostic techniques may provide complementary information.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. 1.

    Bisdas S, Baghi M, Smolarz A et al (2007) Quantitative measurements of perfusion and permeability of oropharyngeal and oral cavity cancer, recurrent disease, and associated lymph nodes using first-pass contrast-enhanced computed tomography studies. Invest Radiol 42:172–179

    Article  PubMed  Google Scholar 

  2. 2.

    Gandhi D, Hoeffner EG, Carlos RC et al (2003) Computed tomography perfusion of squamous cell carcinoma of the upper aerodigestive tract. Initial results. J Comput Assist Tomogr 27:687–693

    Article  PubMed  Google Scholar 

  3. 3.

    Hermans R, Meijerink M, Van den Bogaert W et al (2003) Tumor perfusion rate determined noninvasively by dynamic computed tomography predicts outcome in head-and-neck cancer after radiotherapy. Int J Radiat Oncol Biol Phys 57:1351–1356

    PubMed  Google Scholar 

  4. 4.

    Rumboldt Z, Al-Okaili R, Deveikis JP (2005) Perfusion CT for head and neck tumors: pilot study. AJNR Am J Neuroradiol 26:1178–1185

    PubMed  Google Scholar 

  5. 5.

    Surlan-Popovic K, Bisdas S, Rumboldt Z et al (2010) Changes in perfusion CT of advanced squamous cell carcinoma of the head and neck treated during the course of concomitant chemoradiotherapy. AJNR Am J Neuroradiol 31:570–575

    Google Scholar 

  6. 6.

    Zima A, Carlos R, Gandhi D et al (2007) Can pretreatment CT perfusion predict response of advanced squamous cell carcinoma of the upper aerodigestive tract treated with induction chemotherapy? AJNR Am J Neuroradiol 28:328–334

    CAS  PubMed  Google Scholar 

  7. 7.

    Hoskin PJ, Saunders MI, Goodchild K et al (1999) Dynamic contrast enhanced magnetic resonance scanning as a predictor of response to accelerated radiotherapy for advanced head and neck cancer. Br J Radiol 72:1093–1098

    CAS  PubMed  Google Scholar 

  8. 8.

    Kim S, Loevner LA, Quon H et al (2009) Prediction of response to chemoradiation therapy in squamous cell carcinomas of the head and neck using dynamic contrast-enhanced MR imaging. AJNR Am J Neuroradiol. doi:10.3174/ajnr.A1817

    Google Scholar 

  9. 9.

    Newbold K, Castellano I, Charles-Edwards E et al (2009) An exploratory study into the role of dynamic contrast-enhanced magnetic resonance imaging or perfusion computed tomography for detection of intratumoral hypoxia in head-and-neck cancer. Int J Radiat Oncol Biol Phys 74:29–37

    PubMed  Google Scholar 

  10. 10.

    Baba Y, Yamashita Y, Onomichi M et al (1999) Dynamic magnetic resonance imaging of head and neck lesions. Top Magn Reson Imaging 10:125–129

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Escott EJ, Rao VM, Ko WD et al (1997) Comparison of dynamic contrast-enhanced gradient-echo and spin-echo sequences in MR of head and neck neoplasms. AJNR Am J Neuroradiol 18:1411–1419

    CAS  PubMed  Google Scholar 

  12. 12.

    Guckel C, Schnabel K, Deimling M et al (1996) Dynamic snapshot gradient-echo imaging of head and neck malignancies: time dependency and quality of contrast-to-noise ratio. Magma 4:61–69

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Al-Ibraheem A, Buck A, Krause BJ et al (2009) Clinical applications of FDG PET and PET/CT in head and neck cancer. J Oncol 2009:208725

    PubMed  Google Scholar 

  14. 14.

    Ng SH, Yen TC, Chang JT et al (2006) Prospective study of [18F]fluorodeoxyglucose positron emission tomography and computed tomography and magnetic resonance imaging in oral cavity squamous cell carcinoma with palpably negative neck. J Clin Oncol 24:4371–4376

    Article  PubMed  Google Scholar 

  15. 15.

    Lyford-Pike S, Ha PK, Jacene HA et al (2009) Limitations of PET/CT in determining need for neck dissection after primary chemoradiation for advanced head and neck squamous cell carcinoma. ORL J Otorhinolaryngol Relat Spec 71:251–256

    CAS  PubMed  Google Scholar 

  16. 16.

    Seitz O, Chambron-Pinho N, Middendorp M et al (2009) 18F-Fluorodeoxyglucose-PET/CT to evaluate tumor, nodal disease, and gross tumor volume of oropharyngeal and oral cavity cancer: comparison with MR imaging and validation with surgical specimen. Neuroradiology 51:677–686

    Article  PubMed  Google Scholar 

  17. 17.

    Chung MK, Jeong HS, Park SG et al (2009) Metabolic tumor volume of [18F]-fluorodeoxyglucose positron emission tomography/computed tomography predicts short-term outcome to radiotherapy with or without chemotherapy in pharyngeal cancer. Clin Cancer Res 15:5861–5868

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Galban CJ, Chenevert TL, Meyer CR et al (2009) The parametric response map is an imaging biomarker for early cancer treatment outcome. Nat Med 15:572–576

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Bisdas S, Spicer K, Rumboldt Z (2008) Whole-tumor perfusion CT parameters and glucose metabolism measurements in head and neck squamous cell carcinomas: a pilot study using combined positron-emission tomography/CT imaging. AJNR Am J Neuroradiol 29:1376–1381

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Hirasawa S, Tsushima Y, Takei H et al (2007) Inverse correlation between tumor perfusion and glucose uptake in human head and neck tumors. Acad Radiol 14:312–318

    Article  PubMed  Google Scholar 

  21. 21.

    Tofts PS, Kermode AG (1991) Measurement of the blood-brain barrier permeability and leakage space using dynamic MR imaging. 1. Fundamental concepts. Magn Reson Med 17:357–367

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Zwick S, Brix G, Tofts PS et al (2009) Simulation-based comparison of two approaches frequently used for dynamic contrast-enhanced MRI. Eur Radiol. doi:10.1007/s00330-009-1556-6

    PubMed  Google Scholar 

  23. 23.

    Nestle U, Kremp S, Schaefer-Schuler A et al (2005) Comparison of different methods for delineation of 18F-FDG PET-positive tissue for target volume definition in radiotherapy of patients with non-Small cell lung cancer. J Nucl Med 46:1342–1348

    PubMed  Google Scholar 

  24. 24.

    Baek CH, Chung MK, Son YI et al (2008) Tumor volume assessment by 18F-FDG PET/CT in patients with oral cavity cancer with dental artifacts on CT or MR images. J Nucl Med 49:1422–1428

    Article  PubMed  Google Scholar 

  25. 25.

    Noworolski SM, Fischbein NJ, Kaplan MJ et al (2003) Challenges in dynamic contrast-enhanced MRI imaging of cervical lymph nodes to detect metastatic disease. J Magn Reson Imaging 17:455–462

    Article  PubMed  Google Scholar 

  26. 26.

    Kim S, Quon H, Loevner LA et al (2007) Transcytolemmal water exchange in pharmacokinetic analysis of dynamic contrast-enhanced MRI data in squamous cell carcinoma of the head and neck. J Magn Reson Imaging 26:1607–1617

    Article  PubMed  Google Scholar 

  27. 27.

    Jackson A, Haroon H, Zhu XP et al (2002) Breath-hold perfusion and permeability mapping of hepatic malignancies using magnetic resonance imaging and a first-pass leakage profile model. NMR Biomed 15:164–173

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    George ML, Dzik-Jurasz AS, Padhani AR et al (2001) Non-invasive methods of assessing angiogenesis and their value in predicting response to treatment in colorectal cancer. Br J Surg 88:1628–1636

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    van Laarhoven HW, Klomp DW, Rijpkema M et al (2007) Prediction of chemotherapeutic response of colorectal liver metastases with dynamic gadolinium-DTPA-enhanced MRI and localized 19F MRS pharmacokinetic studies of 5-fluorouracil. NMR Biomed 20:128–140

    Article  PubMed  Google Scholar 

  30. 30.

    Zhou R, Pickup S, Yankeelov TE et al (2004) Simultaneous measurement of arterial input function and tumor pharmacokinetics in mice by dynamic contrast enhanced imaging: effects of transcytolemmal water exchange. Magn Reson Med 52:248–257

    Article  PubMed  Google Scholar 

  31. 31.

    Tofts PS, Brix G, Buckley DL et al (1999) Estimating kinetic parameters from dynamic contrast-enhanced T(1)-weighted MRI of a diffusable tracer: standardized quantities and symbols. J Magn Reson Imaging 10:223–232

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    Brix G, Kiessling F, Lucht R et al (2004) Microcirculation and microvasculature in breast tumors: pharmacokinetic analysis of dynamic MR image series. Magn Reson Med 52:420–429

    Article  PubMed  Google Scholar 

  33. 33.

    Zhu XP, Li KL, Kamaly-Asl ID et al (2000) Quantification of endothelial permeability, leakage space, and blood volume in brain tumors using combined T1 and T2* contrast-enhanced dynamic MR imaging. J Magn Reson Imaging 11:575–585

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Parker GJ, Suckling J, Tanner SF et al (1997) Probing tumor microvascularity by measurement, analysis and display of contrast agent uptake kinetics. J Magn Reson Imaging 7:564–574

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Zhao J, Salmon H, Sarntinoranont M (2007) Effect of heterogeneous vasculature on interstitial transport within a solid tumor. Microvasc Res 73:224–236

    CAS  Article  PubMed  Google Scholar 

  36. 36.

    Jain RK (1987) Transport of molecules across tumor vasculature. Cancer Metastasis Rev 6:559–593

    CAS  Article  PubMed  Google Scholar 

  37. 37.

    Pellerin M, Yankeelov TE, Lepage M (2007) Incorporating contrast agent diffusion into the analysis of DCE-MRI data. Magn Reson Med 58:1124–1134

    Article  PubMed  Google Scholar 

  38. 38.

    Bisdas S, Rumboldt Z, Wagenblast J et al (2009) Response and progression-free survival in oropharynx squamous cell carcinoma assessed by pretreatment perfusion CT: comparison with tumor volume measurements. AJNR Am J Neuroradiol 30:793–799

    CAS  Article  PubMed  Google Scholar 

  39. 39.

    Cao Y, Popovtzer A, Li D et al (2008) Early prediction of outcome in advanced head-and-neck cancer based on tumor blood volume alterations during therapy: a prospective study. Int J Radiat Oncol Biol Phys 72:1287–1290

    PubMed  Google Scholar 

  40. 40.

    Evelhoch JL (1999) Key factors in the acquisition of contrast kinetic data for oncology. J Magn Reson Imaging 10:254–259

    CAS  Article  PubMed  Google Scholar 

  41. 41.

    Bisdas S, Medov L, Baghi M et al (2008) A comparison of tumour perfusion assessed by deconvolution-based analysis of dynamic contrast-enhanced CT and MR imaging in patients with squamous cell carcinoma of the upper aerodigestive tract. Eur Radiol 18:843–850

    Article  PubMed  Google Scholar 

  42. 42.

    Eby PR, Partridge SC, White SW et al (2008) Metabolic and vascular features of dynamic contrast-enhanced breast magnetic resonance imaging and (15)O-water positron emission tomography blood flow in breast cancer. Acad Radiol 15:1246–1254

    Article  PubMed  Google Scholar 

  43. 43.

    Tseng J, Dunnwald LK, Schubert EK et al (2004) 18F-FDG kinetics in locally advanced breast cancer: correlation with tumor blood flow and changes in response to neoadjuvant chemotherapy. J Nucl Med 45:1829–1837

    CAS  PubMed  Google Scholar 

  44. 44.

    Torizuka T, Zasadny KR, Recker B et al (1998) Untreated primary lung and breast cancers: correlation between F-18 FDG kinetic rate constants and findings of in vitro studies. Radiology 207:767–774

    CAS  PubMed  Google Scholar 

  45. 45.

    Semple SI, Gilbert FJ, Redpath TW et al (2004) The relationship between vascular and metabolic characteristics of primary breast tumours. Eur Radiol 14:2038–2045

    Article  PubMed  Google Scholar 

  46. 46.

    Brix G, Henze M, Knopp MV et al (2001) Comparison of pharmacokinetic MRI and [18F] fluorodeoxyglucose PET in the diagnosis of breast cancer: initial experience. Eur Radiol 11:2058–2070

    CAS  Article  PubMed  Google Scholar 

  47. 47.

    Mankoff DA, Dunnwald LK, Gralow JR et al (2002) Blood flow and metabolism in locally advanced breast cancer: relationship to response to therapy. J Nucl Med 43:500–509

    PubMed  Google Scholar 

  48. 48.

    Avril N, Bense S, Ziegler SI et al (1997) Breast imaging with fluorine-18-FDG PET: quantitative image analysis. J Nucl Med 38:1186–1191

    CAS  PubMed  Google Scholar 

  49. 49.

    Komar G, Kauhanen S, Liukko K et al (2009) Decreased blood flow with increased metabolic activity: a novel sign of pancreatic tumor aggressiveness. Clin Cancer Res 15:5511–5517

    CAS  Article  PubMed  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Sotirios Bisdas.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bisdas, S., Seitz, O., Middendorp, M. et al. An exploratory pilot study into the association between microcirculatory parameters derived by MRI-based pharmacokinetic analysis and glucose utilization estimated by PET-CT imaging in head and neck cancer. Eur Radiol 20, 2358–2366 (2010).

Download citation


  • Magnetic resonance imaging
  • Functional tumour imaging
  • PET-CT imaging
  • Carcinoma
  • Squamous cell
  • Fluorodeoxyglucose F18