Advertisement

European Radiology

, Volume 20, Issue 9, pp 2084–2091 | Cite as

Coronary artery stent imaging with 128-slice dual-source CT using high-pitch spiral acquisition in a cardiac phantom: comparison with the sequential and low-pitch spiral mode

  • Florian WolfEmail author
  • Sebastian Leschka
  • Christian Loewe
  • Peter Homolka
  • Christina Plank
  • Ruediger Schernthaner
  • Dominik Bercaczy
  • Robert Goetti
  • Johannes Lammer
  • Guy Friedrich
  • Borut Marincek
  • Hatem Alkadhi
  • Gudrun Feuchtner
Cardiac

Abstract

Objective

To evaluate coronary stents in vitro using 128-slice-dual-source computed tomography (CT).

Methods

Twelve different coronary stents placed in a non-moving cardiac/chest phantom were examined by 128-slice dual-source CT using three CT protocols [high-pitch spiral (HPS), sequential (SEQ) and conventional spiral (SPIR)]. Artificial in-stent lumen narrowing (ALN), visible inner stent area (VIA), artificial in-stent lumen attenuation (ALA) in percent, image noise inside/outside the stent and CTDIvol were measured.

Results

Mean ALN was 46% for HPS, 44% for SEQ and 47% for SPIR without significant difference. Mean VIA was similar with 31% for HPS, 30% for SEQ and 33% for SPIR. Mean ALA was, at 5% for HPS, significantly lower compared with −11% for SPIR (p = 0.024), but not different from SEQ with −1%. Mean image noise was significantly higher for HPS compared with SEQ and SPIR inside and outside the stent (p < 0.001). CTDIvol was lower for HPS (5.17 mGy), compared with SEQ (9.02 mGy) and SPIR (55.97 mGy), respectively.

Conclusion

The HPS mode of 128-slice dual-source CT yields fewer artefacts inside the stent lumen compared with SPIR and SEQ, but image noise is higher. ALN is still too high for routine stent evaluation in clinical practice. Radiation dose of the HPS mode is markedly (less than about tenfold) reduced.

Keywords

Cardiac CT Coronary stents High-pitch spiral mode 128-slice CT Computed tomography 

References

  1. 1.
    Carbonaro S, Villines TC, Hausleiter J, Devine PJ, Gerber TC, Taylor AJ (2009) International, multidisciplinary update of the 2006 Appropriateness Criteria for cardiac computed tomography. J Cardiovasc Comput Tomogr 3:224–232CrossRefPubMedGoogle Scholar
  2. 2.
    Mahnken AH, Muhlenbruch G, Seyfarth T et al (2006) 64-slice computed tomography assessment of coronary artery stents: a phantom study. Acta Radiol 47:36–42CrossRefPubMedGoogle Scholar
  3. 3.
    Maintz D, Seifarth H, Raupach R et al (2006) 64-slice multidetector coronary CT angiography: in vitro evaluation of 68 different stents. Eur Radiol 16:818–826CrossRefPubMedGoogle Scholar
  4. 4.
    Seifarth H, Ozgun M, Raupach R et al (2006) 64-Versus 16-slice CT angiography for coronary artery stent assessment: in vitro experience. Invest Radiol 41:22–27CrossRefPubMedGoogle Scholar
  5. 5.
    Wolf F, Cademartiri F, Loewe C et al (2009) Evaluation of coronary stents with 64-MDCT: in vitro comparison of scanners from four vendors. AJR Am J Roentgenol 193:787–794CrossRefPubMedGoogle Scholar
  6. 6.
    Wolf F, Feuchtner GM, Homolka P et al (2008) In vitro imaging of coronary artery stents: are there differences between 16- and 64-slice CT scanners? Eur J Radiol 68:465–470CrossRefPubMedGoogle Scholar
  7. 7.
    Maintz D, Burg MC, Seifarth H et al (2009) Update on multidetector coronary CT angiography of coronary stents: in vitro evaluation of 29 different stent types with dual-source CT. Eur Radiol 19:42–492CrossRefPubMedGoogle Scholar
  8. 8.
    Ertel D, Lell MM, Harig F, Flohr T, Schmidt B, Kalender WA (2009) Cardiac spiral dual-source CT with high pitch: a feasibility study. Eur Radiol 19:2357–2362CrossRefPubMedGoogle Scholar
  9. 9.
    Achenbach S, Marwan M, Schepis T et al (2009) High-pitch spiral acquisition: a new scan mode for coronary CT angiography. J Cardiovasc Comput Tomogr 3:117–121CrossRefPubMedGoogle Scholar
  10. 10.
    Lell M, Marwan M, Schepis T et al (2009) Prospectively ECG-triggered high-pitch spiral acquisition for coronary CT angiography using dual source CT: technique and initial experience. Eur Radiol 19:2576–2583CrossRefPubMedGoogle Scholar
  11. 11.
    Leschka S, Stolzmann P, Desbiolles L et al (2009) Diagnostic accuracy of high-pitch dual-source CT for the assessment of coronary stenoses: first experience. Eur Radiol 19:2896–2903CrossRefPubMedGoogle Scholar
  12. 12.
    Homolka P, Gahleitner A, Prokop M, Nowotny R (2002) Optimization of the composition of phantom materials for computed tomography. Phys Med Biol 47:2907–2916CrossRefPubMedGoogle Scholar
  13. 13.
    Menzel HSH, Teunen D (2000) European guidelines on quality criteria for computed tomography. Publication no EUR 16262 EN, European Commission, LuxembourgGoogle Scholar
  14. 14.
    Pflederer T, Rudofsky L, Ropers D et al (2009) Image quality in a low radiation exposure protocol for retrospectively ECG-gated coronary CT angiography. AJR Am J Roentgenol 192:1045–1050CrossRefPubMedGoogle Scholar
  15. 15.
    Arnoldi E, Johnson TR, Rist C et al (2009) Adequate image quality with reduced radiation dose in prospectively triggered coronary CTA compared with retrospective techniques. Eur Radiol 19:2147–2155CrossRefPubMedGoogle Scholar
  16. 16.
    Sheth T, Dodd JD, Hoffmann U et al (2007) Coronary stent assessability by 64 slice multi-detector computed tomography. Catheter Cardiovasc Interv 69:933–938CrossRefPubMedGoogle Scholar
  17. 17.
    Pugliese F, Weustink AC, Van Mieghem C et al (2008) Dual source coronary computed tomography angiography for detecting in-stent restenosis. Heart 94:848–854CrossRefPubMedGoogle Scholar
  18. 18.
    Sun Z, Davidson R, Lin CH (2009) Multi-detector row CT angiography in the assessment of coronary in-stent restenosis: a systematic review. Eur J Radiol 69:489–495CrossRefPubMedGoogle Scholar
  19. 19.
    Rixe J, Achenbach S, Ropers D et al (2006) Assessment of coronary artery stent restenosis by 64-slice multi-detector computed tomography. Eur Heart J 27:2567–2572CrossRefPubMedGoogle Scholar
  20. 20.
    Schuijf JD, Pundziute G, Jukema JW et al (2007) Evaluation of patients with previous coronary stent implantation with 64-section CT. Radiology 245:416–423CrossRefPubMedGoogle Scholar
  21. 21.
    Haraldsdottir S, Gudnason T, Sigurdsson AF et al (2009) Diagnostic accuracy of 64-slice multidetector CT for detection of in-stent restenosis in an unselected, consecutive patient population. Eur J Radiol. doi: 10.1016/j.ejrad.2009.05.030 PubMedGoogle Scholar
  22. 22.
    Das KM, El-Menyar AA, Salam AM et al (2007) Contrast-enhanced 64-section coronary multidetector CT angiography versus conventional coronary angiography for stent assessment. Radiology 245:424–432CrossRefPubMedGoogle Scholar
  23. 23.
    Ehara M, Kawai M, Surmely JF et al (2007) Diagnostic accuracy of coronary in-stent restenosis using 64-slice computed tomography: comparison with invasive coronary angiography. J Am Coll Cardiol 49:951–959CrossRefPubMedGoogle Scholar
  24. 24.
    Hecht HS, Zaric M, Jelnin V, Lubarsky L, Prakash M, Roubin G (2008) Usefulness of 64-detector computed tomographic angiography for diagnosing in-stent restenosis in native coronary arteries. Am J Cardiol 101:820–824CrossRefPubMedGoogle Scholar
  25. 25.
    Oncel D, Oncel G, Tastan A, Tamci B (2008) Evaluation of coronary stent patency and in-stent restenosis with dual-source CT coronary angiography without heart rate control. AJR Am J Roentgenol 191:56–63CrossRefPubMedGoogle Scholar
  26. 26.
    Carrabba N, Bamoshmoosh M, Carusi LM et al (2007) Usefulness of 64-slice multidetector computed tomography for detecting drug eluting in-stent restenosis. Am J Cardiol 100:1754–1758CrossRefPubMedGoogle Scholar
  27. 27.
    Boll DT, Merkle EM, Paulson EK, Fleiter TR (2008) Coronary stent patency: dual-energy multidetector CT assessment in a pilot study with anthropomorphic phantom. Radiology 247:687–695CrossRefPubMedGoogle Scholar

Copyright information

© European Society of Radiology 2010

Authors and Affiliations

  • Florian Wolf
    • 1
    Email author
  • Sebastian Leschka
    • 2
  • Christian Loewe
    • 1
  • Peter Homolka
    • 3
  • Christina Plank
    • 1
  • Ruediger Schernthaner
    • 1
  • Dominik Bercaczy
    • 1
  • Robert Goetti
    • 2
  • Johannes Lammer
    • 1
  • Guy Friedrich
    • 4
  • Borut Marincek
    • 2
  • Hatem Alkadhi
    • 2
  • Gudrun Feuchtner
    • 2
    • 4
  1. 1.Department of Radiology, Division of Cardiovascular and Interventional RadiologyMedical University of ViennaViennaAustria
  2. 2.Institute of Diagnostic RadiologyUniversity Hospital ZurichZurichSwitzerland
  3. 3.Center for Biomedical Engineering and PhysicsMedical University of ViennaViennaAustria
  4. 4.Department of Radiology IIInnsbruck Medical UniversityInnsbruckAustria

Personalised recommendations