Advertisement

European Radiology

, Volume 20, Issue 9, pp 2184–2193 | Cite as

Non-invasive tracking of human haemopoietic CD34+ stem cells in vivo in immunodeficient mice by using magnetic resonance imaging

  • Markus NiemeyerEmail author
  • Robert A. J. Oostendorp
  • Markus Kremer
  • Sandra Hippauf
  • Volker R. Jacobs
  • Hansjörg Baurecht
  • Georg Ludwig
  • Guido Piontek
  • Viktoria Bekker-Ruz
  • Sebastian Timmer
  • Ernst J. Rummeny
  • Marion Kiechle
  • Ambros J. Beer
Molecular Imaging

Abstract

Objective

To assess migration of CD34+ human stem cells to the bone marrow of athymic mice by using magnetic resonance (MR) imaging and Resovist, a contrast agent containing superparamagnetic iron oxide (SPIO) particles.

Methods

All animal and human procedures were approved by our institution’s ethics committee, and women had given consent to donate umbilical cord blood (UCB). Balb/c-AnN Foxn1nu/Crl mice received intravenous injection of 1 × 106 (n = 3), 5 × 106 (n = 3) or 1 × 107 (n = 3) human Resovist-labelled CD34+ cells; control mice received Resovist (n = 3). MR imaging was performed before, 2 and 24 h after transplantation. Signal intensities of liver, muscle and bone marrow were measured and analysed by ANOVA and post hoc Student’s t tests. MR imaging data were verified by histological and immunological detection of both human cell surface markers and carboxydextran-coating of the contrast agent.

Results

CD34+ cells were efficiently labelled by Resovist without impairment of functionality. Twenty-four hours after administration of labelled cells, MR imaging revealed a significant signal decline in the bone marrow, and histological and immunological analyses confirmed the presence of transplanted human CD34+ cells.

Conclusion

Intravenously administered Resovist-labelled CD34+ cells home to bone marrow of mice. Homing can be tracked in vivo by using clinical 1.5-T MR imaging technology.

Keywords

Magnetic resonance imaging Cell tracking Haemopoietic CD34 stem cells Superparamagnetic iron oxide particles Bone marrow homing 

Notes

Acknowledgements

This work was supported by internal clinical funding from the Technische Universität München (KKF 08-04).

References

  1. 1.
    Kondo M, Wagers AJ, Manz MG et al (2003) Biology of hematopoietic stem cells and progenitors: implications for clinical application. Annu Rev Immunol 21:759–806CrossRefPubMedGoogle Scholar
  2. 2.
    Reya T, Morrison SJ, Clarke MF et al (2001) Stem cells, cancer, and cancer stem cells. Nature 414:105–111CrossRefPubMedGoogle Scholar
  3. 3.
    Bradley MB, Cairo MS (2005) Cord blood immunology and stem cell transplantation. Hum Immunol 66:431–446CrossRefPubMedGoogle Scholar
  4. 4.
    Eapen M, Rubinstein P, Zhang MJ et al (2007) Outcomes of transplantation of unrelated donor umbilical cord blood and bone marrow in children with acute leukaemia: a comparison study. Lancet 369:1947–1954CrossRefPubMedGoogle Scholar
  5. 5.
    Civin CI, Trischmann T, Kadan NS et al (1996) Highly purified CD34-positive cells reconstitute hematopoiesis. J Clin Oncol 14:2224–2233PubMedGoogle Scholar
  6. 6.
    Wagner JE, Barker JN, DeFor TE et al (2002) Transplantation of unrelated donor umbilical cord blood in 102 patients with malignant and nonmalignant diseases: influence of CD34 cell dose and HLA disparity on treatment-related mortality and survival. Blood 100:1611–1618PubMedGoogle Scholar
  7. 7.
    Elmaagacli AH, Peceny R, Steckel N et al (2003) Outcome of transplantation of highly purified peripheral blood CD34+ cells with T-cell add-back compared with unmanipulated bone marrow or peripheral blood stem cells from HLA-identical sibling donors in patients with first chronic phase chronic myeloid leukemia. Blood 101:446–453CrossRefPubMedGoogle Scholar
  8. 8.
    Lanzkron SM, Collector MI, Sharkis SJ (1999) Hematopoietic stem cell tracking in vivo: a comparison of short-term and long-term repopulating cells. Blood 93:1916–1921PubMedGoogle Scholar
  9. 9.
    Strauer BE, Kornowski R (2003) Stem cell therapy in perspective. Circulation 107:929–934CrossRefPubMedGoogle Scholar
  10. 10.
    Barkhausen J, Quick HH, Lauenstein T et al (2001) Whole-body MR imaging in 30 seconds with real-time true FISP and a continuously rolling table platform: feasibility study. Radiology 220:252–256PubMedGoogle Scholar
  11. 11.
    Choi S, Tang XW, Cory DG (1997) Constant time imaging approaches to NMR microscopy. Int J Imaging Syst Technol 8:263–276CrossRefGoogle Scholar
  12. 12.
    Daldrup-Link HE, Rudelius M, Oostendorp RA et al (2003) Targeting of hematopoietic progenitor cells with MR contrast agents. Radiology 228:760–767CrossRefPubMedGoogle Scholar
  13. 13.
    Rudelius M, drup-Link HE, Heinzmann U et al (2003) Highly efficient paramagnetic labelling of embryonic and neuronal stem cells. Eur J Nucl Med Mol Imaging 30:1038–1044CrossRefPubMedGoogle Scholar
  14. 14.
    Arbab AS, Yocum GT, Wilson LB et al (2004) Comparison of transfection agents in forming complexes with ferumoxides, cell labeling efficiency, and cellular viability. Mol Imaging 3:24–32CrossRefPubMedGoogle Scholar
  15. 15.
    Frank JA, Miller BR, Arbab AS et al (2003) Clinically applicable labeling of mammalian and stem cells by combining superparamagnetic iron oxides and transfection agents. Radiology 228:480–487CrossRefPubMedGoogle Scholar
  16. 16.
    Frank JA, Anderson SA, Kalsih H et al (2004) Methods for magnetically labeling stem and other cells for detection by in vivo magnetic resonance imaging. Cytotherapy 6:621–625CrossRefPubMedGoogle Scholar
  17. 17.
    Daldrup-Link HE, Rudelius M, Piontek G et al (2005) Migration of iron oxide-labeled human hematopoietic progenitor cells in a mouse model: in vivo monitoring with 1.5-T MR imaging equipment. Radiology 234:197–205CrossRefPubMedGoogle Scholar
  18. 18.
    Maxwell DJ, Bonde J, Hess DA et al (2008) Fluorophore-conjugated iron oxide nanoparticle labeling and analysis of engrafting human hematopoietic stem cells. Stem Cells 26:517–524CrossRefPubMedGoogle Scholar
  19. 19.
    Ahmed F, Ings SJ, Pizzey AR et al (2004) Impaired bone marrow homing of cytokine-activated CD34+ cells in the NOD/SCID model. Blood 103:2079–2087CrossRefPubMedGoogle Scholar
  20. 20.
    Oostendorp RA, Gilfillan S, Parmar A et al (2008) Oncostatin M-mediated regulation of KIT-ligand-induced extracellular signal-regulated kinase signaling maintains hematopoietic repopulating activity of Lin-CD34+CD133+ cord blood cells. Stem Cells 26:2164–2172CrossRefPubMedGoogle Scholar
  21. 21.
    Breems DA, Blokland EA, Neben S et al (1994) Frequency analysis of human primitive haematopoietic stem cell subsets using a cobblestone area forming cell assay. Leukemia 8:1095–1104PubMedGoogle Scholar
  22. 22.
    O’Brien RG, Muller KE (1993) Unified power analysis for t-tests through multivariate hypotheses. In: Applied analysis of variance in behavioral science. Marcel Dekker, New York, pp 297–344Google Scholar
  23. 23.
    Bonde J, Hess DA, Nolta JA (2004) Recent advances in hematopoietic stem cell biology. Curr Opin Hematol 11:392–398CrossRefPubMedGoogle Scholar
  24. 24.
    Hacein-Bey-Abina S, Von KC, Schmidt M et al (2003) A serious adverse event after successful gene therapy for X-linked severe combined immunodeficiency. N Engl J Med 348:255–256CrossRefPubMedGoogle Scholar
  25. 25.
    Gillies RJ (2002) In vivo molecular imaging. J Cell Biochem Suppl 39:231–238CrossRefPubMedGoogle Scholar
  26. 26.
    Arbab AS, Yocum GT, Kalish H et al (2004) Efficient magnetic cell labeling with protamine sulfate complexed to ferumoxides for cellular MRI. Blood 104:1217–1223CrossRefPubMedGoogle Scholar
  27. 27.
    Arbab AS, Janic B, Knight RA et al (2008) Detection of migration of locally implanted AC133+ stem cells by cellular magnetic resonance imaging with histological findings. FASEB J 22:3234–3246CrossRefPubMedGoogle Scholar

Copyright information

© European Society of Radiology 2010

Authors and Affiliations

  • Markus Niemeyer
    • 1
    Email author
  • Robert A. J. Oostendorp
    • 2
  • Markus Kremer
    • 3
  • Sandra Hippauf
    • 2
  • Volker R. Jacobs
    • 1
  • Hansjörg Baurecht
    • 4
  • Georg Ludwig
    • 5
  • Guido Piontek
    • 6
  • Viktoria Bekker-Ruz
    • 2
  • Sebastian Timmer
    • 1
  • Ernst J. Rummeny
    • 5
  • Marion Kiechle
    • 1
  • Ambros J. Beer
    • 5
    • 7
  1. 1.Department of Gynaecology, Klinikum rechts der IsarTechnische Universität MünchenMunichGermany
  2. 2.Department of Oncology, Klinikum rechts der IsarTechnische Universität MünchenMunichGermany
  3. 3.Department of Pathology, Klinikum rechts der IsarTechnische Universität MünchenMunichGermany
  4. 4.Department of Statistics, Klinikum rechts der Isar, Institute for Medical Statistics and EpidemiologyTechnische Universität MünchenMunichGermany
  5. 5.Department of Radiology, Klinikum rechts der IsarTechnische Universität MünchenMunichGermany
  6. 6.Department of NeuropathologyTechnische Universität MünchenMunichGermany
  7. 7.Department of Nuclear MedicineTechnische Universität MünchenMunichGermany

Personalised recommendations