European Radiology

, Volume 20, Issue 9, pp 2116–2125 | Cite as

Quantification of radiation dose savings in cardiac computed tomography using prospectively triggered mode and ECG pulsing: a phantom study

  • Lukas LehmkuhlEmail author
  • Dieter Gosch
  • H. D. Nagel
  • Patrick Stumpp
  • Thomas Kahn
  • Matthias Gutberlet
Computed Tomography



To quantify radiation dose reduction in cardiac computed tomography (CT) using a prospectively triggered mode compared with a retrospective ECG-gated helical mode.


Absorbed organ doses in cardiac 64-row multidetector CT were quantified using an anthropomorphic male Alderson phantom with 74 thermoluminescence dosimeters. Three different imaging protocols were applied: retrospective ECG-gating, retrospective ECG-gating with additional ECG-pulsing, and a prospectively triggered mode. The measured organ doses were compared with dose estimation by a mathematical phantom.


Compared with the retrospective ECG-gating mode, the mean relative organ doses were reduced by 44% using ECG pulsing and by 76% using the prospectively triggered mode. The range of dose savings varied from 34% to 49% using ECG pulsing and from 65% to 87% using the prospectively triggered mode. The effective dose was 16.5 mSv using retrospective gating, 9.2 mSv using retrospective gating with ECG pulsing and 4.0 mSv using the prospectively triggered mode.


Our measurements confirm the high dose-saving potential of the prospectively triggered technique in cardiac CT. The reduction in the organ doses measured corresponds to estimates determined by the mathematical phantom. The effective dose calculated by the mathematical phantom was, in some cases, significantly lower than that calculated using the anthropomorphic phantom.


Computed tomography Prospective gating Radiation dose Organ dose Phantom 


  1. 1.
    Rosamond W, Flegal K, Furie K, Go A, Greenlund K, Haase N et al (2008) Heart disease and stroke statistics–2008 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation 117:e25–146CrossRefPubMedGoogle Scholar
  2. 2.
    Budoff MJ, Dowe D, Jollis JG, Gitter M, Sutherland J, Halamert E et al (2008) Diagnostic performance of 64-multidetector row coronary computed tomographic angiography for evaluation of coronary artery stenosis in individuals without known coronary artery disease: results from the prospective multicenter ACCURACY (Assessment by Coronary Computed Tomographic Angiography of Individuals Undergoing Invasive Coronary Angiography) trial. J Am Coll Cardiol 52:1724–1732CrossRefPubMedGoogle Scholar
  3. 3.
    Meijboom WB, Meijs MF, Schuijf JD, Cramer MJ, Mollet NR, van Mieghem CA et al (2008) Diagnostic accuracy of 64-slice computed tomography coronary angiography: a prospective, multicenter, multivendor study. J Am Coll Cardiol 52:2135–2144CrossRefPubMedGoogle Scholar
  4. 4.
    Miller JM, Rochitte CE, Dewey M, Arbab-Zadeh A, Niinuma H, Gottlieb I et al (2008) Diagnostic performance of coronary angiography by 64-row CT. N Engl J Med 359:2324–2336CrossRefPubMedGoogle Scholar
  5. 5.
    Coles DR, Smail MA, Negus IS, Wilde P, Oberhoff M, Karsch KR et al (2006) Comparison of radiation doses from multislice computed tomography coronary angiography and conventional diagnostic angiography. J Am Coll Cardiol 47:1840–1845CrossRefPubMedGoogle Scholar
  6. 6.
    Hausleiter J, Meyer T, Hadamitzky M, Huber E, Zankl M, Martinoff S et al (2006) Radiation dose estimates from cardiac multislice computed tomography in daily practice: impact of different scanning protocols on effective dose estimates. Circulation 113:1305–1310CrossRefPubMedGoogle Scholar
  7. 7.
    Hurwitz LM, Reiman RE, Yoshizumi TT, Goodman PC, Toncheva G, Nguyen G et al (2007) Radiation dose from contemporary cardiothoracic multidetector CT protocols with an anthropomorphic female phantom: implications for cancer induction. Radiology 245:742–750CrossRefPubMedGoogle Scholar
  8. 8.
    Nickoloff EL, Alderson PO (2007) A comparative study of thoracic radiation doses from 64-slice cardiac CT. Br J Radiol 80:537–544CrossRefPubMedGoogle Scholar
  9. 9.
    Gopal A, Mao SS, Karlsberg D, Young E, Waggoner J, Ahmadi N et al (2008) Radiation reduction with prospective ECG-triggering acquisition using 64-multidetector computed tomographic angiography. Int J Cardiovasc Imaging 25:405–416CrossRefPubMedGoogle Scholar
  10. 10.
    Klass O, Jeltsch M, Feuerlein S, Brunner H, Nagel HD, Walker MJ et al (2008) Prospectively gated axial CT coronary angiography: preliminary experiences with a novel low-dose technique. Eur Radiol 19:829–836CrossRefPubMedGoogle Scholar
  11. 11.
    Shuman WP, Branch KR, May JM, Mitsumori LM, Lockhart DW, Dubinsky TJ et al (2008) Prospective versus retrospective ECG gating for 64-detector CT of the coronary arteries: comparison of image quality and patient radiation dose. Radiology 248:431–437CrossRefPubMedGoogle Scholar
  12. 12.
    Geleijns J, Van Unnik JG, Zoetelief J, Zweers D, Broerse JJ (1994) Comparison of two methods for assessing patient dose from computed tomography. Br J Radiol 67:360–365CrossRefPubMedGoogle Scholar
  13. 13.
    Shrimpton PC (2004) Assessment of patient dose in CT. NRPB-PE/1/2004Google Scholar
  14. 14.
    Hsieh J, Londt J, Vass M, Li J, Tang X, Okerlund D (2006) Step-and-shoot data acquisition and reconstruction for cardiac x-ray computed tomography. Med Phys 33:4236–4248CrossRefPubMedGoogle Scholar
  15. 15.
    Huda W, Sandison GA (1984) Estimation of mean organ doses in diagnostic radiology from Rando phantom measurements. Health Phys 47:463–467PubMedGoogle Scholar
  16. 16.
    Golikov VY, Nikitin VV (1989) Estimation of the mean organ doses and the effective dose equivalent from Rando phantom measurements. Health Phys 56:111–115PubMedGoogle Scholar
  17. 17.
    Kramer R, Zankl M, Williams G, Drexler G (1982) The calculation of dose from external photon exposures using reference human phantoms and Monte Carlo methods. Part I. The male (Adam) and female (Eva) adult mathematical phantoms. GSF-Report S-885. NeuherbergGoogle Scholar
  18. 18.
    International Commission on Radiological Protection (ICRP) 60 (1991) Recommendations of the International Commission on Radiological Protection. Pergamon Press, OxfordGoogle Scholar
  19. 19.
    Stamm G, Nagel HD (2002) CT-expo–a novel program for dose evaluation in CT. Rofo 174:1570–1576PubMedGoogle Scholar
  20. 20.
    Zankl M, Panzer W, Drexler G (1991) The calculation of dose from external photon exposures using reference human phantoms and Monte Carlo methods. Part VI. Organ doses from computed tomographic examinations. GSF-Report 30/91. Institute for Radiation Biology, NeuherbergGoogle Scholar
  21. 21.
    Shleien B (1973) Review of determinations of radiation dose to the active bone marrow from diagnostic X-ray examinations. DHEW publication—no. (FDA) 74–8007, RockvilleGoogle Scholar
  22. 22.
    DeMarco JJ, Cagnon CH, Cody DD, Stevens DM, McCollough CH, Zankl M et al (2007) Estimating radiation doses from multidetector CT using Monte Carlo simulations: effects of different size voxelized patient models on magnitudes of organ and effective dose. Phys Med Biol 52:2583–2597CrossRefPubMedGoogle Scholar
  23. 23.
    Hidajat N, Vogl T, Schroder RJ, Felix R (1996) Calculated organ doses and effective dosage for computerized tomography examination of the thorax and abdomen: are these doses realistic? Rofo 164:382–387PubMedGoogle Scholar
  24. 24.
    Veit R, Panzer W, Zankl M, Scheurer C (1992) Vergleich berechneter und gemessener Dosen an einem anthropomorphen Phantom. Z Med Phys 2:123–126Google Scholar
  25. 25.
    Stolzmann P, Scheffel H, Schertler T, Frauenfelder T, Leschka S, Husmann L et al (2008) Radiation dose estimates in dual-source computed tomography coronary angiography. Eur Radiol 18:592–599CrossRefPubMedGoogle Scholar
  26. 26.
    Wang M, Qi HT, Wang XM, Wang T, Chen JH, Liu C (2008) Dose performance and image quality: Dual source CT versus single source CT in cardiac CT angiography. Eur J Radiol 72:396–400CrossRefPubMedGoogle Scholar
  27. 27.
    Hausleiter J, Meyer T, Hermann F, Hadamitzky M, Krebs M, Gerber TC et al (2009) Estimated radiation dose associated with cardiac CT angiography. JAMA 301:500–507CrossRefPubMedGoogle Scholar
  28. 28.
    Hermann F, Martinoff S, Meyer T, Hadamitzky M, Jiang C, Hendrich E et al (2008) Reduction of radiation dose estimates in cardiac 64-slice CT angiography in patients after coronary artery bypass graft surgery. Invest Radiol 43:253–260CrossRefPubMedGoogle Scholar
  29. 29.
    Trabold T, Buchgeister M, Kuttner A, Heuschmid M, Kopp AF, Schroder S et al (2003) Estimation of radiation exposure in 16-detector row computed tomography of the heart with retrospective ECG-gating. Rofo 175:1051–1055PubMedGoogle Scholar
  30. 30.
    Husmann L, Valenta I, Gaemperli O, Adda O, Treyer V, Wyss CA et al (2008) Feasibility of low-dose coronary CT angiography: first experience with prospective ECG-gating. Eur Heart J 29:191–197CrossRefPubMedGoogle Scholar
  31. 31.
    Blankstein R, Shah A, Pale R, Abbara S, Bezerra H, Bolen M et al (2009) Radiation dose and image quality of prospective triggering with dual-source cardiac computed tomography. Am J Cardiol 103:1168–1173CrossRefPubMedGoogle Scholar
  32. 32.
    Hirai N, Horiguchi J, Fujioka C, Kiguchi M, Yamamoto H, Matsuura N et al (2008) Prospective versus retrospective ECG-gated 64-detector coronary CT angiography: assessment of image quality, stenosis, and radiation dose. Radiology 248:424–430CrossRefPubMedGoogle Scholar
  33. 33.
    Shuman WP, Branch KR, May JM, Mitsumori LM, Strote JN, Warren BH et al (2009) Whole-chest 64-MDCT of emergency department patients with nonspecific chest pain: radiation dose and coronary artery image quality with prospective ECG triggering versus retrospective ECG gating. AJR Am J Roentgenol 192:1662–1667CrossRefPubMedGoogle Scholar
  34. 34.
    Einstein AJ, Henzlova MJ, Rajagopalan S (2007) Estimating risk of cancer associated with radiation exposure from 64-slice computed tomography coronary angiography. JAMA 298:317–323CrossRefPubMedGoogle Scholar
  35. 35.
    The 2007 Recommendations of the International Commission on Radiological Protection (2007) ICRP publication 103, Ann ICRP 37:1–332Google Scholar
  36. 36.
    Hart D, Jones DG, Wang M (1994) Normalised organ doses for medical X-ray examinations calculated using Monte-Carlo techniques (NRPB-SR262). National Radiological Protection Board, ChiltonGoogle Scholar
  37. 37.
    Schindera ST, Nelson RC, Lee ER, DeLong DM, Ngyen G, Toncheva G et al (2007) Abdominal multislice CT for obese patients: effect on image quality and radiation dose in a phantom study. Acad Radiol 14:486–494CrossRefPubMedGoogle Scholar

Copyright information

© European Society of Radiology 2010

Authors and Affiliations

  • Lukas Lehmkuhl
    • 1
    • 4
    Email author
  • Dieter Gosch
    • 2
  • H. D. Nagel
    • 3
  • Patrick Stumpp
    • 2
  • Thomas Kahn
    • 2
  • Matthias Gutberlet
    • 1
  1. 1.Department of Diagnostic and Interventional RadiologyUniversity of Leipzig—Heart CenterLeipzigGermany
  2. 2.Department of Diagnostic and Interventional RadiologyUniversity of LeipzigLeipzigGermany
  3. 3.Philips GmbHUnternehmensbereich HealthcareLeipzigGermany
  4. 4.Diagnostische und Interventionelle RadiologieUniversität Leipzig—HerzzentrumLeipzigGermany

Personalised recommendations