European Radiology

, Volume 20, Issue 7, pp 1563–1571 | Cite as

Computer-aided interpretation of dynamic magnetic resonance imaging reflects histopathology of invasive breast cancer

  • Pascal A. T. BaltzerEmail author
  • Tibor Vag
  • Matthias Dietzel
  • Sebastian Beger
  • Christian Freiberg
  • Mieczyslaw Gajda
  • Oumar Camara
  • Werner A. Kaiser



To perform a semiautomated software-based comparison of invasive breast carcinoma dynamic enhancement patterns in MR mammography with histological prognostic factors considering whole lesion volumes.

Material and methods

A total of 128 patients with 145 invasive breast carcinomas underwent dynamic MR mammography. Kinetic features from the invasive breast lesions were obtained using commercially available software to automatically assess volume enhancement characteristics of a manually chosen lesion. Findings were compared with histological factors determining tumour aggressiveness (lymph node status, LN; oestrogen/progesterone receptor (ER/PR) status; HER-2/neu status; tumour grade) by using nonparametric rank tests and binary logistic regression analysis (BLRA).


Volume enhancement characteristics were significantly influenced by LN, ER/PR and HER-2/neu status (P < 0.05). BLRA implied that total lesion and plateau voxel volume were independent predictors of ER/PR and HER-2/neu status. Strongest initial enhancement predicted negative ER/PR, and time to peak of the most suspect curve was inversely correlated with positive LN status. On the other hand, no statistical significance could be observed between histological tumour grading and kinetic features.


Histopathological criteria associated with poor prognosis lead to significantly more aggressive dynamic enhancement patterns in MR mammography. In this study, higher lesion volumes as well as higher and earlier initial enhancement were independent covariates predicting higher tumour aggressiveness.


Breast Neoplasm MRI DCE-MRI Computer-assisted diagnosis 


  1. 1.
    Bone B, Aspelin P, Bronge L et al (1996) Sensitivity and specificity of MR mammography with histopathological correlation in 250 breasts. Acta Radiol 37:208–213PubMedGoogle Scholar
  2. 2.
    Drew PJ, Chatterjee S, Turnbull LW et al (1999) Dynamic contrast enhanced magnetic resonance imaging of the breast is superior to triple assessment for the pre-operative detection of multifocal breast cancer. Ann Surg Oncol 6:599–603CrossRefPubMedGoogle Scholar
  3. 3.
    Kaiser WA, Zeitler E (1989) MR imaging of the breast: fast imaging sequences with and without Gd-DTPA. Preliminary observations. Radiology 170:681–686PubMedGoogle Scholar
  4. 4.
    Stomper PC, Herman S, Klippenstein DL et al (1995) Suspect breast lesions: findings at dynamic gadolinium-enhanced MR imaging correlated with mammographic and pathologic features. Radiology 197:387–395PubMedGoogle Scholar
  5. 5.
    Berg WA, Gutierrez L, NessAiver MS et al (2004) Diagnostic accuracy of mammography, clinical examination, US, and MR imaging in preoperative assessment of breast cancer. Radiology 233:830–849CrossRefPubMedGoogle Scholar
  6. 6.
    Fischer DR, Wurdinger S, Boettcher J et al (2005) Further signs in the evaluation of magnetic resonance mammography: a retrospective study. Invest Radiol 40:430–435CrossRefPubMedGoogle Scholar
  7. 7.
    Kaiser WA (2007) Breast magnetic resonance imaging: principles and techniques. Semin Roentgenol 42:228–235CrossRefPubMedGoogle Scholar
  8. 8.
    Malich A, Fischer DR, Wurdinger S et al (2005) Potential MRI interpretation model: differentiation of benign from malignant breast masses. AJR 185:964–970CrossRefPubMedGoogle Scholar
  9. 9.
    Neubauer H, Li M, Kuehne-Heid R et al (2003) High grade and non-high grade ductal carcinoma in situ on dynamic MR mammography: characteristic findings for signal increase and morphological pattern of enhancement. Br J Radiol 76:3–12CrossRefPubMedGoogle Scholar
  10. 10.
    Mussurakis S, Buckley DL, Horsman A (1997) Dynamic MR imaging of invasive breast cancer: correlation with tumour grade and other histological factors. Br J Radiol 70:446–451PubMedGoogle Scholar
  11. 11.
    Narisada H, Aoki T, Sasaguri T et al (2006) Correlation between numeric gadolinium-enhanced dynamic MRI ratios and prognostic factors and histologic type of breast carcinoma. AJR 187:297–306CrossRefPubMedGoogle Scholar
  12. 12.
    Tuncbilek N, Karakas HM, Okten OO (2005) Dynamic magnetic resonance imaging in determining histopathological prognostic factors of invasive breast cancers. Eur J Radiol 53:199–205CrossRefPubMedGoogle Scholar
  13. 13.
    Fischer U, Kopka L, Brinck U et al (1997) Prognostic value of contrast-enhanced MR mammography in patients with breast cancer. Eur Radiol 7:1002–1005CrossRefPubMedGoogle Scholar
  14. 14.
    Baltzer PA, Renz DM, Kullnig PE et al (2009) Application of computer-aided diagnosis (CAD) in MR-mammography (MRM): do we really need whole lesion time curve distribution analysis? Acad Radiol 16:435–442CrossRefPubMedGoogle Scholar
  15. 15.
    Contesso G, Mouriesse H, Friedman S et al (1987) The importance of histologic grade in long-term prognosis of breast cancer: a study of 1,010 patients, uniformly treated at the Institut Gustave-Roussy. J Clin Oncol 5:1378–1386PubMedGoogle Scholar
  16. 16.
    Donegan WL (1997) Tumour-related prognostic factors for breast cancer. CA Cancer J Clin 47:28–51CrossRefPubMedGoogle Scholar
  17. 17.
    Fisher B, Redmond C, Fisher ER et al (1988) Relative worth of oestrogen or progesterone receptor and pathologic characteristics of differentiation as indicators of prognosis in node negative breast cancer patients: findings from National Surgical Adjuvant Breast and Bowel Project Protocol B-06. J Clin Oncol 6:1076–1087PubMedGoogle Scholar
  18. 18.
    Stewart JF, Rubens RD, Millis RR et al (1983) Steroid receptors and prognosis in operable (stage I and II) breast cancer. Eur J Cancer Clin Oncol 19:1381–1387CrossRefPubMedGoogle Scholar
  19. 19.
    Marks JR, Humphrey PA, Wu K et al (1994) Overexpression of p53 and HER-2/neu proteins as prognostic markers in early stage breast cancer. Ann Surg 219:332–341CrossRefPubMedGoogle Scholar
  20. 20.
    Folkman J (1971) Tumour angiogenesis: therapeutic implications. New Engl J Med 285:1182–1186PubMedGoogle Scholar
  21. 21.
    Weidner N, Semple JP, Welch WR et al (1991) Tumour angiogenesis and metastasis-correlation in invasive breast carcinoma. New Engl J Med 324:1–8PubMedCrossRefGoogle Scholar
  22. 22.
    Tresserra F, Rodriguez I, Garcia-Yuste M et al (2007) Tumour size and lymph node status in multifocal breast cancer. Breast J 13:68–71CrossRefPubMedGoogle Scholar
  23. 23.
    Chen JH, Baek HM, Nalcioglu O et al (2008) Oestrogen receptor and breast MR imaging features: a correlation study. J Magn Reson Imaging 27:825–833CrossRefPubMedGoogle Scholar
  24. 24.
    Szabo BK, Aspelin P, Kristoffersen Wiberg M et al (2003) Invasive breast cancer: correlation of dynamic MR features with prognostic factors. Eur Radiol 13:2425–2435CrossRefPubMedGoogle Scholar
  25. 25.
    Dent R, Hanna WM, Trudeau M et al (2009) Pattern of metastatic spread in triple-negative breast cancer. Breast Cancer Res Treat 115:423–428CrossRefPubMedGoogle Scholar
  26. 26.
    Henson DE, Chu KC, Levine PH (2003) Histologic grade, stage, and survival in breast carcinoma: comparison of African American and Caucasian women. Cancer 98:908–917CrossRefPubMedGoogle Scholar
  27. 27.
    Ignatiadis M, Sotiriou C (2008) Understanding the molecular basis of histologic grade. Pathobiology 75:104–111CrossRefPubMedGoogle Scholar
  28. 28.
    Longacre TA, Ennis M, Quenneville LA et al (2006) Interobserver agreement and reproducibility in classification of invasive breast carcinoma: an NCI breast cancer family registry study. Mod Pathol 19:195–207CrossRefPubMedGoogle Scholar
  29. 29.
    Pabst T, Kenn W, Kaiser WA et al (2001) Understanding why contrast enhancement in dynamic MRI is not reproducible: illustration with a simple phantom. Breast J 7:166–170CrossRefPubMedGoogle Scholar
  30. 30.
    Port RE, Knopp MV, Brix G (2001) Dynamic contrast-enhanced MRI using Gd-DTPA: interindividual variability of the arterial input function and consequences for the assessment of kinetics in tumours. Magn Reson Med 45:1030–1038CrossRefPubMedGoogle Scholar
  31. 31.
    Zwick S, Brix G, Tofts PS et al (2009) Simulation-based comparison of two approaches frequently used for dynamic contrast-enhanced MRI. Eur Radiol. doi: 10.1007/s00330-009-1556-6 PubMedGoogle Scholar

Copyright information

© European Society of Radiology 2010

Authors and Affiliations

  • Pascal A. T. Baltzer
    • 1
    Email author
  • Tibor Vag
    • 1
  • Matthias Dietzel
    • 1
  • Sebastian Beger
    • 1
  • Christian Freiberg
    • 1
  • Mieczyslaw Gajda
    • 2
  • Oumar Camara
    • 3
  • Werner A. Kaiser
    • 1
  1. 1.Institute of Diagnostic and Interventional RadiologyFriedrich Schiller University of JenaJenaGermany
  2. 2.Institute of PathologyFriedrich Schiller University of JenaJenaGermany
  3. 3.Clinic of GynecologyFriedrich Schiller University of JenaJenaGermany

Personalised recommendations