European Radiology

, Volume 20, Issue 7, pp 1545–1553 | Cite as

Digital breast tomosynthesis versus digital mammography: a clinical performance study

  • Gisella GennaroEmail author
  • Alicia Toledano
  • Cosimo di Maggio
  • Enrica Baldan
  • Elisabetta Bezzon
  • Manuela La Grassa
  • Luigi Pescarini
  • Ilaria Polico
  • Alessandro Proietti
  • Aida Toffoli
  • Pier Carlo Muzzio



To compare the clinical performance of digital breast tomosynthesis (DBT) with that of full-field digital mammography (FFDM) in a diagnostic population.


The study enrolled 200 consenting women who had at least one breast lesion discovered by mammography and/or ultrasound classified as doubtful or suspicious or probably malignant. They underwent tomosynthesis in one view [mediolateral oblique (MLO)] of both breasts at a dose comparable to that of standard screen-film mammography in two views [craniocaudal (CC) and MLO]. Images were rated by six breast radiologists using the BIRADS score. Ratings were compared with the truth established according to the standard of care and a multiple-reader multiple-case (MRMC) receiver-operating characteristic (ROC) analysis was performed. Clinical performance of DBT compared with that of FFDM was evaluated in terms of the difference between areas under ROC curves (AUCs) for BIRADS scores.


Overall clinical performance with DBT and FFDM for malignant versus all other cases was not significantly different (AUCs 0.851 vs 0.836, p = 0.645). The lower limit of the 95% CI or the difference between DBT and FFDM AUCs was −4.9%.


Clinical performance of tomosynthesis in one view at the same total dose as standard screen-film mammography is not inferior to digital mammography in two views.


Digital breast tomosynthesis Digital mammography ROC analysis Clinical performance Non-inferiority 



The authors would like to thank Luc Katz, Francesca Braga, Henri Souchay, Razvan Iordache, and Sylvain Bernard from GE Healthcare for helpful discussion and scientific debate, and Lorenzo Pesce from University of Chicago for his support on ROC fitting models.

A. Toledano (statistician) is consultant for GE Healthcare.


  1. 1.
    Niklason LT, Christian BT, Niklason LE, Kopans DB, Castleberry DE, Ophsal-Ong BH, Landberg CE, Slanetz PJ, Giardino AA, Moore R, Albagli D, DeJoule MC, Fitzgerald PF, Fobare DF, Giambattista BW, Kwasnick RF, Liu J, Lubowski SJ, Possin GE, Richotte JF, Wei C-Y, Wirth RF (1997) Digital tomosynthesis in breast imaging. Radiology 205:399–406PubMedGoogle Scholar
  2. 2.
    Dobbins JT III, Godfrey DJ (2003) Digital x-ray tomosynthesis: current state of the art and clinical potential. Phys Med Biol 48:R65–R106CrossRefPubMedGoogle Scholar
  3. 3.
    Park JM, Franken EA Jr, Garg M, Fajardo LL, Niklason LT (2007) Breast tomosynthesis: present considerations and future applications. Radiographics (Suppl 1):S231–S240Google Scholar
  4. 4.
    Rafferty E (2007) Digital mammography: novel applications. Radiol Clin N Am 45:831–843CrossRefPubMedGoogle Scholar
  5. 5.
    van Tiggelen R (2002) In search for the third dimension: from radiostereoscopy to three-dimensional imaging. JBR-BTR 85:266–270PubMedGoogle Scholar
  6. 6.
    Mahesh M (2004) Digital mammography: an overview. Radiographics 24:1747–1760CrossRefPubMedGoogle Scholar
  7. 7.
    Spahn M (2005) Flat detectors and their clinical applications. Eur Radiol 15:1934–1947CrossRefPubMedGoogle Scholar
  8. 8.
    Pisano ED, Yaffe MJ (2005) Digital mammography. Radiology 234:353–362CrossRefPubMedGoogle Scholar
  9. 9.
    Wu T, Liu B, Moore R, Kopans D (2006) Optimal acquisition techniques for digital breast tomosynthesis screening. In: Flynn MJ, Hsieh J (eds) Medical imaging 2006: physics of medical imaging. Proceedings of SPIE 2006 6142:61425-EGoogle Scholar
  10. 10.
    Sechopoulos I, Suryanarayanan S, Vedhantam S, D’Orsi C, Karellas A (2007) Computation of the glandular radiation dose in digital tomosynthesis of the breast. Med Phys 34:331–232Google Scholar
  11. 11.
    Ma AKW, Darambera DG, Stewart A, Gunn S, Bullard E (2008) Mean glandular dose estimation using MNCPX for a digital breast tomosynthesis system with tungsten/aluminum and tungsten/aluminum + silver x-ray anode/filter combination. Med Phys 35:5278–5289CrossRefPubMedGoogle Scholar
  12. 12.
    Gong X, Glick SJ, Liu B, Vedula AA, Thacker S (2006) A computer simulation study comparing lesion detection accuracy with digital mammography, breast tomosynthesis and cone-beam CT breast-imaging. Med Phys 33:1041–1052CrossRefPubMedGoogle Scholar
  13. 13.
    Zhao B, Zhao W (2008) Three-dimensional linear system analysis for breast tomosynthesis. Med Phys 35:5219–5232CrossRefPubMedGoogle Scholar
  14. 14.
    Zhou J, Zhao B, Zhao W (2007) A computer simulation platform for the optimization of a breast tomosynthesis system. Med Phys 34:1098–1109CrossRefPubMedGoogle Scholar
  15. 15.
    Chawla AS, Samei E, Saunders RS, Lo JY, Baker JA (2008) A mathematical model platform for optimizing a multiprojection breast imaging system. Med Phys 35:1337–1345CrossRefPubMedGoogle Scholar
  16. 16.
    Wang X, Mainprize JG, Kempston MP, Mawdsley GE, Yaffe MJ (2007) Digital breast tomosynthesis geometry calibration. In: Flynn MJ, Hsieh J (ed) Medical imaging 2007: physics of medical imaging. Proceedings of SPIE 2007 6510:65103BGoogle Scholar
  17. 17.
    Sechopoulos I, Suryanarayanan S, Vedhantam S, D’Orsi C, Karellas A (2007) Scatter radiation in digital tomosynthesis of the breast. Med Phys 34:564–576CrossRefPubMedGoogle Scholar
  18. 18.
    Wu T, Moore RH, Rafferty EA, Kopans DB (2004) A comparison of reconstruction algorithms for breast tomosynthesis. Med Phys 31:2636–2647CrossRefPubMedGoogle Scholar
  19. 19.
    Wu T, Moore RH, Kopans DB (2006) Voting strategy for artifact reduction in digital breast tomosynthesis. Med Phys 33:1461–1471Google Scholar
  20. 20.
    Zhang Y, Chan H-P, Sahiner B, Wei J, Goodsitt MM, Hadjiiski LM, Ge J, Zhou C (2006) A comparative study of limited angle cone-beam reconstruction methods for breast tomosynthesis. Med Phys 33:3781–3795CrossRefPubMedGoogle Scholar
  21. 21.
    Chan H-P, Sahiner B, Rafferty EA, Wu T, Roubidoux MA, Moore RH, Kopans DB, Hadjiiski LM, Helvie MA (2005) Computer-aided detection system for breast masses on digital tomosynthesis mammograms: preliminary experience. Radiology 237:1075–1080CrossRefPubMedGoogle Scholar
  22. 22.
    Reiser I, Nishikawa RM, Giger ML, Wu T, Rafferty EA, Moore R, Kopans DB (2006) Computerized mass detection for digital breast tomosynthesis directly from projection images. Med Phys 33:482–491CrossRefPubMedGoogle Scholar
  23. 23.
    Chan H-P, Wei J, Zhang Y, Helvie MA, Moore RH, Sahiner B, Hadjiiski LM, Kopans DB (2008) Computer-aided detection of masses in digital tomosynthesis mammography: comparison of three approaches. Med Phys 35:4087–4095CrossRefPubMedGoogle Scholar
  24. 24.
    Reiser I, Nishikawa RM, Edwards AV, Kopans DB, Schmidt RA, Papaioannou J, Moore RH (2008) Automated detection of microcalcification clusters for digital breast tomosynthesis using projection data only: a preliminary study. Med Phys 35:1486–1493CrossRefPubMedGoogle Scholar
  25. 25.
    Poplack SP, Tosteson TD, Kogel CA, Nagy HM (2007) Digital breast tomosynthesis: initial experience in 98 women with abnormal digital screening mammography. AJR Am J Roentgenol 189:616–623CrossRefPubMedGoogle Scholar
  26. 26.
    Good WF, Abrams GS, Catullo VJ, Chough DM, Ganott MA, Hakim CM, Gur D (2008) Digital breast tomosynthesis: a pilot observer study. AJR Am J Roentgenol 190:865–869CrossRefPubMedGoogle Scholar
  27. 27.
    Andersson I, Ikeda DM, Zackrisson S, Ruschin M, Svahn T, Timberg P, Timberg A (2008) Breast tomosynthesis and digital mammography: a comparison of breast cancer visibility and BIRADS classification in a population of cancers with subtle mammographic findings. Eur Radiol 18:2817–2825CrossRefPubMedGoogle Scholar
  28. 28.
    Smith AP, Rafferty EA, Niklason L (2008) Clinical performance of breast tomosynthesis as a function of radiologist experience level. LNCS 5116:61–66Google Scholar
  29. 29.
    van Engen R, van Wouldenberg S, Bosmans H, Young K, Thjissen M (2006) European protocol for the quality control of the physical aspects of mammography screening—Screen-film mammography. In: European Guidelines for Quality Assurance in Breast Cancer Screening and Diagnosis, 4th edn. European Commission, Luxembourg, pp 61–104Google Scholar
  30. 30.
    Dance DR, Skinner CL, Young KC, Beckett JR, Kotre CJ (2000) Additional factors for the estimation of mean glandular breast dose using the UK mammography dosimetry protocol. Phys Med Biol 45:3225–3240CrossRefPubMedGoogle Scholar
  31. 31.
    American College of Radiology (ACR) (2003) Breast Imaging Reporting and Data System Atlas (BI-RADS Atlas). American College of Radiology, RestonGoogle Scholar
  32. 32.
    Metz CE, Pan X (1999) “Proper” binormal ROC curves: theory and maximum-likelihood estimation. J Math Psychol 43:1–33CrossRefPubMedGoogle Scholar
  33. 33.
    Pesce LL, Metz CE (2007) Reliable and computationally efficient maximum-likelihood estimation of “proper” binormal ROC curves. Acad Radiol 14:814–829CrossRefPubMedGoogle Scholar
  34. 34.
    Dorfman DD, Berbaum KS (2000) A contaminated binormal model for ROC data: part II. A formal model. Acad Radiol 7:427–437CrossRefPubMedGoogle Scholar
  35. 35.
    Obuchowski NA (2007) New methodological tools for multiple-reader ROC studies. Radiology 243:10–12CrossRefPubMedGoogle Scholar
  36. 36.
    Obuchowski NA (1995) Multireader, multimodality receiver operating characteristic curve studies: hypothesis testing and sample size estimation using an analysis of variance approach with dependent observations. Acad Radiol 2:S22–S29CrossRefPubMedGoogle Scholar
  37. 37.
    Hillis SL (2007) A comparison of denominator degrees of freedom methods for multiple observer ROC analysis. Stat Med 26:596–619CrossRefPubMedGoogle Scholar
  38. 38.
    Obuchowski NA (1997) Testing for equivalence of diagnostic tests. AJR Am J Roentgenol 168:13–17PubMedGoogle Scholar
  39. 39.
    Gennaro G, di Maggio C (2006) Dose comparison between screen/film and full-field digital mammography. Eur Radiol 16:2559–2566CrossRefPubMedGoogle Scholar
  40. 40.
    Samei E, Saunders RS, Baker JA, Delong DM (2007) Digital mammography: effects of reduced radiation dose on diangostic performance. Radiology 243:396–404CrossRefPubMedGoogle Scholar
  41. 41.
    Svahn T, Hemdal B, Ruschin M, Chakraborty DP, Andersson I, Tingberg A, Mattsson S (2007) Dose reduction and its influence on diagnostic accuracy and radiation risk in digital mammography: an observer performance study using an anthropomorphic breast phantom. Br J Radiol 80:557–562CrossRefPubMedGoogle Scholar
  42. 42.
    Dobbins JT III (2009) Tomosynthesis imaging: at a translational crossroads. Med Phys 36:1956–1967CrossRefPubMedGoogle Scholar

Copyright information

© European Society of Radiology 2009

Authors and Affiliations

  • Gisella Gennaro
    • 1
    Email author
  • Alicia Toledano
    • 2
  • Cosimo di Maggio
    • 3
  • Enrica Baldan
    • 1
  • Elisabetta Bezzon
    • 1
  • Manuela La Grassa
    • 4
  • Luigi Pescarini
    • 1
    • 3
  • Ilaria Polico
    • 1
  • Alessandro Proietti
    • 1
  • Aida Toffoli
    • 1
  • Pier Carlo Muzzio
    • 1
    • 5
  1. 1.Department of RadiologyVenetian Oncological Institute (IOV), IRCCSPaduaItaly
  2. 2.Statistics Collaborative Inc.WashingtonUSA
  3. 3.Department of Oncological and Surgical SciencesPadua UniversityPaduaItaly
  4. 4.Department of RadiologyAviano Oncological Reference Center (CRO), IRCCSAviano (Pordenone)Italy
  5. 5.Department of Medical Diagnostic SciencesPadua UniversityPaduaItaly

Personalised recommendations