Skip to main content

Advertisement

Log in

Dynamic contrast-enhanced MR imaging to assess physiologic variations of myometrial perfusion

  • Urogenital
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Purpose

To prospectively evaluate the ability of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) to assess physiological microvascular states in normal myometrium.

Materials and methods

Eighty-five women (62 women of reproductive age, 23 postmenopausal) undergoing DCE-MRI of the pelvis were included. Microvascular parameters for the inner and outer myometrium were analysed using a pharmacokinetic model. These parameters were tissue blood flow (F), blood volume fraction (V b), permeability–surface area product (PS), interstitial volume fraction (V e) and lag time (Dt).

Results

In the women of reproductive age, the inner myometrium displayed higher F and PS, lower V b and V e, and longer Dt than the outer myometrium (p = 0.02, p = 0.01, p = 0.005, p = 0.03 and p = 0.01, respectively). The inner myometrium presented microvascular variations during the menstrual cycle with a pre-ovulatory peak followed by a fall reaching a nadir of F and V b about 4 days after ovulation. Compared with women of reproductive age, in the postmenopausal state, F and V b decreased in the outer myometrium, while PS, V e and Dt increased (p < 0.0001, p = 0.001, p = 0.001, p = 0.03 and p = 0.0004, respectively).

Conclusion

DCE-MRI is a non-invasive technique that can measure variations of myometrial microcirculation, and thereby be potentially useful to help characterize the role and states of the myometrium in assisted reproductive therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Findlay JK (1986) Angiogenesis in reproductive tissues. J Endocrinol 111:357–366

    Article  CAS  PubMed  Google Scholar 

  2. Ryan KJ, Makris A (1987) Significance of angiogenic and growth factors in ovarian follicular development. Adv Exp Med Biol 219:203–209

    CAS  PubMed  Google Scholar 

  3. Torry DS, Leavenworth J, Chang M et al (2007) Angiogenesis in implantation. J Assist Reprod Genet 24:303–315

    Article  PubMed  Google Scholar 

  4. Farrer-Brown G, Beilby JOW, Tarbitt MH (1970) The blood supply of the uterus. Venous pattern. J Obstet Gynecol Br Commonw 77:682–689

    CAS  Google Scholar 

  5. Farrer-Brown G, Beilby JOW, Tarbitt MH (1970) The blood supply of the uterus. Arterial vasculature. J Obstet Gynecol Br Commonw 77:673–681

    CAS  Google Scholar 

  6. Girling JE, Rogers PA (2005) Recent advances in endometrial angiogenesis research. Angiogenesis 8:89–99

    Article  PubMed  Google Scholar 

  7. Raine-Fenning NJ, Campbell BK, Kendall NR, Clewes JS, Johnson IR (2004) Endometrial and subendometrial perfusion are impaired in women with unexplained subfertility. Hum Reprod 19:2605–2614

    Article  CAS  PubMed  Google Scholar 

  8. Raine-Fenning NJ, Campbell BK, Kendall NR, Clewes JS, Johnson IR (2004) Quantifying the changes in endometrial vascularity throughout the normal menstrual cycle with three-dimensional power Doppler angiography. Hum Reprod 19:330–338

    Article  CAS  PubMed  Google Scholar 

  9. Brix G, Semmler W, Port R, Schad LR, Layer G, Lorenz WJ (1991) Pharmacokinetic parameters in CNS Gd-DTPA enhanced MR imaging. J Comput Assist Tomogr 15:621–628

    Article  CAS  PubMed  Google Scholar 

  10. Tofts PS, Kermode AG (1991) Measurement of the blood-brain barrier permeability and leakage space using dynamic MR imaging. 1. Fundamental concepts. Magn Reson Med 17:357–367

    Article  CAS  PubMed  Google Scholar 

  11. Larsson HB, Stubgaard M, Sondergaard L, Henriksen O (1994) In vivo quantification of the unidirectional influx constant for Gd-DTPA diffusion across the myocardial capillaries with MR imaging. J Magn Reson Imaging 4:433–440

    Article  CAS  PubMed  Google Scholar 

  12. Buckley DL, Drew PJ, Mussurakis S, Monson JR, Horsman A (1997) Microvessel density of invasive breast cancer assessed by dynamic Gd-DTPA enhanced MRI. J Magn Reson Imaging 7:461–464

    Article  CAS  PubMed  Google Scholar 

  13. St Lawrence KS, Lee TY (1998) An adiabatic approximation to the tissue homogeneity model for water exchange in the brain: II. Experimental validation. J Cereb Blood Flow Metab 18:1378–1385

    Article  CAS  PubMed  Google Scholar 

  14. Brix G, Bahner ML, Hoffmann U, Horvath A, Schreiber W (1999) Regional blood flow, capillary permeability, and compartmental volumes: measurement with dynamic CT—initial experience. Radiology 210:269–276

    CAS  PubMed  Google Scholar 

  15. Pradel C, Siauve N, Bruneteau G et al (2003) Reduced capillary perfusion and permeability in human tumour xenografts treated with the VEGF signalling inhibitor ZD4190: an in vivo assessment using dynamic MR imaging and macromolecular contrast media. Magn Reson Imaging 21:845–851

    Article  CAS  PubMed  Google Scholar 

  16. De Bazelaire C, Siauve N, Fournier L et al (2005) Comprehensive model for simultaneous MRI determination of perfusion and permeability using a blood-pool agent in rats rhabdomyosarcoma. Eur Radiol 15:2497–2505

    Article  PubMed  Google Scholar 

  17. Padhani AR, Hayes C, Landau S, Leach MO (2002) Reproducibility of quantitative dynamic MRI of normal human tissues. NMR Biomed 15:143–153

    Article  PubMed  Google Scholar 

  18. Hall GH, Atkin SL, Turnbull LW (2002) Use of dynamic contrast-enhanced MRI to assess the functional vascular pharmacokinetic parameters of normal human ovaries. J Reprod Med 47:107–114

    PubMed  Google Scholar 

  19. Taillieu F, Salomon LJ, Siauve N et al (2006) Placental perfusion and permeability: simultaneous assessment with dual-echo contrast-enhanced MR imaging in mice. Radiology 241:737–745

    Article  PubMed  Google Scholar 

  20. Dujardin M, Luypaert R, Vandenbroucke F et al (2007) Combined T1-based perfusion MRI and MR angiography in kidney: first experience in normals and pathology. Eur J Radiol 69(3):542–9

    Article  Google Scholar 

  21. Schlemmer HP, Merkle J, Grobholz R et al (2004) Can pre-operative contrast-enhanced dynamic MR imaging for prostate cancer predict microvessel density in prostatectomy specimens? Eur Radiol 14:309–317

    Article  PubMed  Google Scholar 

  22. Juan CJ, Chen CY, Jen YM et al (2009) Perfusion characteristics of late radiation injury of parotid glands: quantitative evaluation with dynamic contrast-enhanced MRI. Eur Radiol 19:94–102

    Article  PubMed  Google Scholar 

  23. Yamashita Y, Harada M, Sawada T, Takahashi M, Miyazaki K, Okamura H (1993) Normal uterus and FIGO stage I endometrial carcinoma: dynamic gadolinium-enhanced MR imaging. Radiology 186:495–501

    CAS  PubMed  Google Scholar 

  24. Hoad CL, Fulford J, Raine-Fenning NJ, Campbell BK, Johnson IR, Gowland PA (2006) In vivo perfusion, T1, and T2 measurements in the female pelvis during the normal menstrual cycle: a feasibility study. J Magn Reson Imaging 24:1350–1356

    Article  PubMed  Google Scholar 

  25. Siegelman ES, Outwater EK (1999) Tissue characterization in the female pelvis by means of MR imaging. Radiology 212:5–18

    CAS  PubMed  Google Scholar 

  26. Hricak H, Alpers C, Crooks LE, Sheldon PE (1983) Magnetic resonance imaging of the female pelvis: initial experience. AJR Am J Roentgenol 141:1119–1128

    CAS  PubMed  Google Scholar 

  27. Cenic A, Nabavi DG, Craen RA, Gelb AW, Lee TY (2000) A CT method to measure hemodynamics in brain tumors: validation and application of cerebral blood flow maps. AJNR Am J Neuroradiol 21:462–470

    CAS  PubMed  Google Scholar 

  28. Cenic A, Nabavi DG, Craen RA, Gelb AW, Lee TY (1999) Dynamic CT measurement of cerebral blood flow: a validation study. AJNR Am J Neuroradiol 20:63–73

    CAS  PubMed  Google Scholar 

  29. Balvay D, Tropres I, Billet R et al (2009) Mapping the zonal organization of tumor perfusion and permeability in a rat glioma model by using dynamic contrast-enhanced synchrotron radiation CT. Radiology 250:692–702

    Article  PubMed  Google Scholar 

  30. Balvay D, Frouin F, Calmon G et al (2005) New criteria for assessing fit quality in dynamic contrast-enhanced T1-weighted MRI for perfusion and permeability imaging. Magn Reson Med 54:868–877

    Article  PubMed  Google Scholar 

  31. Lin L (1989) A concordance correlation coefficient to evaluate reproductibility. Biometrics 45:255–268

    Article  CAS  PubMed  Google Scholar 

  32. Jansson I (1969) 133-xenon clearance in the myometrium of pregnant and non-pregnant women. Acta Obstet Gynecol Scand 48:302–321

    Article  CAS  PubMed  Google Scholar 

  33. Steer CV, Campbell S, Pampiglione JS, Kingsland CR, Mason BA, Collins WP (1990) Transvaginal colour flow imaging of the uterine arteries during the ovarian and menstrual cycles. Hum Reprod 5:391–395

    CAS  PubMed  Google Scholar 

  34. Farrer-Brown G, Beilby JOW, Rowles PM (1970) Microvasculature of the uterus. An injection method of study. Obstet Gynecol 35:21–30

    CAS  PubMed  Google Scholar 

  35. Lee JK, Gersell DJ, Balfe DM, Worthington JL, Picus D, Gapp G (1985) The uterus: in vitro MR-anatomic correlation of normal and abnormal specimens. Radiology 157:175–179

    CAS  PubMed  Google Scholar 

  36. Metaxa-Mariatou V, McGavigan CJ, Robertson K, Stewart C, Cameron IT, Campbell S (2002) Elastin distribution in the myometrial and vascular smooth muscle of the human uterus. Mol Hum Reprod 8:559–565

    Article  CAS  PubMed  Google Scholar 

  37. Scoutt LM, Flynn SD, Luthringer DJ, McCauley TR, McCarthy SM (1991) Junctional zone of the uterus: correlation of MR imaging and histologic examination of hysterectomy specimens. Radiology 179:403–407

    CAS  PubMed  Google Scholar 

  38. McCarthy S, Scott G, Majumdar S et al (1989) Uterine junctional zone: MR study of water content and relaxation properties. Radiology 171:241–243

    CAS  PubMed  Google Scholar 

  39. Brown HK, Stoll BS, Nicosia SV et al (1991) Uterine junctional zone: correlation between histologic findings and MR imaging. Radiology 179:409–413

    CAS  PubMed  Google Scholar 

  40. Aitken E, Khaund A, Hamid SA, Millan D, Campbell S (2006) The normal human myometrium has a vascular spatial gradient absent in small fibroids. Hum Reprod 21:2669–2678

    Article  CAS  PubMed  Google Scholar 

  41. Brosens JJ, Barker FG, de Souza NM (1998) Myometrial zonal differentiation and uterine junctional zone hyperplasia in the non-pregnant uterus. Hum Reprod Update 4:496–502

    Article  CAS  PubMed  Google Scholar 

  42. Blackwell PM, Fraser IS (1988) A morphometric and ultrastructural study of the microvessels of the functional zone of normal human endometrium with some notions on possible secretory functions of the endothelial cells. Asia Oceania J Obstet Gynaecol 14:233–250

    CAS  PubMed  Google Scholar 

  43. De Vries K, Lyons BA, Ballard G, Levi CS, Lindsay DJ (1990) Contractions of the inner third of the myometrium. Am J Obstet Gynecol 162:679–682

    PubMed  Google Scholar 

  44. Ijland MM, Evers JL, Dunselman GA, van Katwijk C, Lo CR, Hoogland HJ (1996) Endometrial wavelike movements during the menstrual cycle. Fertil Steril 65:746–749

    CAS  PubMed  Google Scholar 

  45. Kunz G, Beil D, Deininger H, Wildt L, Leyendecker G (1996) The dynamics of rapid sperm transport through the female genital tract: evidence from vaginal sonography of uterine peristalsis and hysterosalpingoscintigraphy. Hum Reprod 11:627–632

    CAS  PubMed  Google Scholar 

  46. Lesny P, Killick SR, Tetlow RL, Robinson J, Maguiness SD (1998) Uterine junctional zone contractions during assisted reproduction cycles. Hum Reprod Update 4:440–445

    Article  CAS  PubMed  Google Scholar 

  47. Wiczyk HP, Janus CL, Richards CJ et al (1988) Comparison of magnetic resonance imaging and ultrasound in evaluating follicular and endometrial development throughout the normal cycle. Fertil Steril 49:969–972

    CAS  PubMed  Google Scholar 

  48. Brosens JJ, Pijnenborg R, Brosens IA (2002) The myometrial junctional zone spiral arteries in normal and abnormal pregnancies: a review of the literature. Am J Obstet Gynecol 187:1416–1423

    Article  PubMed  Google Scholar 

  49. Graham CH, Postovit LM, Park H, Canning MT, Fitzpatrick TE (2000) Adriana and Luisa Castellucci award lecture 1999: role of oxygen in the regulation of trophoblast gene expression and invasion. Placenta 21:443–450

    Article  CAS  PubMed  Google Scholar 

  50. Guerriero S, Ajossa S, Lai MP, Risalvato A, Paoletti AM, Melis GB (1999) Clinical applications of colour Doppler energy imaging in the female reproductive tract and pregnancy. Hum Reprod Update 5:515–529

    Article  CAS  PubMed  Google Scholar 

  51. Sharkey AM, Day K, McPherson A et al (2000) Vascular endothelial growth factor expression in human endometrium is regulated by hypoxia. J Clin Endocrinol Metab 85:402–409

    Article  CAS  PubMed  Google Scholar 

  52. Graham CH, Fitzpatrick TE, McCrae KR (1998) Hypoxia stimulates urokinase receptor expression through a heme protein-dependent pathway. Blood 91:3300–3307

    CAS  PubMed  Google Scholar 

  53. Mitchell DG, Schonholz L, Hilpert PL, Pennell RG, Blum L, Rifkin MD (1990) Zones of the uterus: discrepancy between US and MR images. Radiology 174:827–831

    CAS  PubMed  Google Scholar 

  54. Reinhold C, McCarthy S, Bret PM et al (1996) Diffuse adenomyosis: comparison of endovaginal US and MR imaging with histopathologic correlation. Radiology 199:151–158

    CAS  PubMed  Google Scholar 

  55. Tetlow RL, Richmond I, Manton DJ, Greenman J, Turnbull LW, Killick SR (1999) Histological analysis of the uterine junctional zone as seen by transvaginal ultrasound. Ultrasound Obstet Gynecol 14:188–193

    Article  CAS  PubMed  Google Scholar 

  56. Kunz G, Beil D, Huppert P, Leyendecker G (2000) Structural abnormalities of the uterine wall in women with endometriosis and infertility visualized by vaginal sonography and magnetic resonance imaging. Hum Reprod 15:76–82

    Article  CAS  PubMed  Google Scholar 

  57. Demas BE, Hricak H, Jaffe RB (1986) Uterine MR imaging: effects of hormonal stimulation. Radiology 159:123–126

    CAS  PubMed  Google Scholar 

  58. McCarthy S, Tauber C, Gore J (1986) Female pelvic anatomy: MR assessment of variations during the menstrual cycle and with use of oral contraceptives. Radiology 160:119–123

    CAS  PubMed  Google Scholar 

  59. Brosens JJ, de Souza NM, Barker FG (1995) Uterine junctional zone: function and disease. Lancet 346:558–560

    Article  CAS  PubMed  Google Scholar 

  60. Bazot M, Darai E, Hourani R et al (2004) Deep pelvic endometriosis: MR imaging for diagnosis and prediction of extension of disease. Radiology 232:379–389

    Article  PubMed  Google Scholar 

  61. Simpson NE, He Z, Evelhoch JL (1999) Deuterium NMR tissue perfusion measurements using the tracer uptake approach: I. Optimization of methods. Magn Reson Med 42:42–52

    Article  CAS  PubMed  Google Scholar 

  62. Rijpkema M, Kaanders JH, Joosten FB, van der Kogel AJ, Heerschap A (2001) Method for quantitative mapping of dynamic MRI contrast agent uptake in human tumors. J Magn Reson Imaging 14:457–463

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabelle Thomassin-Naggara.

Appendix

Appendix

In the two-compartment model displayed in Fig. 2, measurements are translated into quantities of contrast agent in voxels of tissue as follows:

$$\begin{gathered} {{\mu _{{\text{art}}} } \mathord{\left/ {\vphantom {{\mu _{{\text{art}}} } k}} \right. \kern-\nulldelimiterspace} k} = \frac{{Q_{{\text{art}}} }}{{V_{{\text{art}}} }} + n_{{\text{art}}} = C_{{\text{b,art}}} + n_{{\text{art}}} = q_{{\text{art}}} + n_{{\text{art}}} \hfill \\ {{\mu _{\text{T}} } \mathord{\left/ {\vphantom {{\mu _{\text{T}} } k}} \right. \kern-\nulldelimiterspace} k} = \frac{{Q_{\text{T}} }}{{V_{\text{T}} }} + n_{\text{T}} = \frac{{Q_{\text{c}} + Q_{\text{e}} }}{{V_{\text{T}} }} + n_{\text{T}} = q_{\text{c}} + q_{\text{e}} + n_{\text{T}} = q_{\text{T}} + n_{\text{T}} \hfill \\ \end{gathered}$$

where μ values are the measures of the contrast enhancement S(t) − S(0) in arterial and tissue regions, S is the MRI intensity at a given time t, and the indices indicate the arterial (art), tissue (T), capillary (c) and interstitial (e) zones; V values are the volumes of the regions and Q the contrast agent quantities in these regions, and q values are the equivalent quantities per volume of the corresponding total measured region. Noise is represented by n and the linear coefficient between contrast enhancement and concentration by k. C b,art is the contrast agent concentration in the artery.

Intermediate plasma variables are defined in the blood compartment for a more readable pharmacokinetic model: the tissue plasma volume V p = (1 − H c) × V b and the tissue plasma perfusion F p = (1 − H c) × F b, where H c is the haematocrit in small vessels. Then, the incoming plasma concentration can be determined, at each time t, by:

$$C_{{\text{p,art}}} \left( t \right) = {{q_{{\text{art}}} \left( {t - Dt} \right)} \mathord{\left/ {\vphantom {{q_{{\text{art}}} \left( {t - Dt} \right)} {\left( {1 - H_a } \right)}}} \right. \kern-\nulldelimiterspace} {\left( {1 - H_a } \right)}}$$

where Dt is the artery to tissue delay and H a the haematocrit in large arteries. The outgoing plasma concentration is:

$$C_{{\text{p,vein}}} \left( t \right) = q_{\text{c}} \left( t \right)/v_{\text{p}}$$

where t (min) is the minimal arteriole to veinule delay and v p is the plasma volume fraction defined by v p = V p/V T. The pharmacokinetic two-compartmental model can then be written as follows:

$$\left\{ \begin{gathered} \frac{{dq_{\text{c}} }}{{dt}} = F_{\text{p}} \times \left( {C_{{\text{p,art}}} \left( t \right) - C_{{\text{p,vein}}} \left( t \right)} \right) - \frac{{PS}}{{v_{\text{p}} }} \times q_{\text{c}} + \frac{{PS}}{{v_{\text{e}} }} \times q_{\text{e}} \hfill \\ \frac{{dq_{\text{e}} }}{{dt}} = \frac{{PS}}{{v_{\text{p}} }} \cdot q_{\text{c}} - \frac{{PS}}{{v_{\text{e}} }} \cdot q_{\text{e}} \hfill \\ \end{gathered} \right.$$

where dq/dt is the time derivation of the quantity q of the agent in the capillary (c) and interstitial (e) compartments and PS is the permeability–surface product and where the interstitial volume fraction v e is defined by v e = V e/V T. When C and q are replaced by μ, the factor k, found in each term of the equation, is nullified.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thomassin-Naggara, I., Balvay, D., Cuenod, C.A. et al. Dynamic contrast-enhanced MR imaging to assess physiologic variations of myometrial perfusion. Eur Radiol 20, 984–994 (2010). https://doi.org/10.1007/s00330-009-1621-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-009-1621-1

Keywords

Navigation