Skip to main content
Log in

Coronary calcium score and computed tomography coronary angiography in high-risk asymptomatic subjects: assessment of diagnostic accuracy and prevalence of non-obstructive coronary artery disease

  • Cardiac
  • Published:
European Radiology Aims and scope Submit manuscript



The aim of the study was to compare the coronary artery calcium score (CACS) and computed tomography coronary angiography (CTCA) for the assessment of non-obstructive/obstructive coronary artery disease (CAD) in high-risk asymptomatic subjects.


Two hundred and thirteen consecutive asymptomatic subjects (113 male; mean age 53.6 ± 12.4 years) with more than one risk factor and an inconclusive or unfeasible non-invasive stress test result underwent CACS and CTCA in an outpatient setting. All patients underwent conventional coronary angiography (CAG). Data from CACS (threshold for positive image: Agatston score 1/100/1,000) and CTCA were compared with CAG regarding the degree of CAD (non-obstructive/obstructive; </≥50% lumen reduction).


The mean calcium score was 151 ± 403 and the prevalence of obstructive CAD was 17% (8% one-vessel and 10% two-vessel disease). Per-patient sensitivity, specificity, positive and negative predictive values of CACS were: 97%, 75%, 45%, and 100%, respectively (Agatston ≥1); 73%, 90%, 60%, and 94%, respectively (Agatston ≥100); 30%, 98%, 79%, and 87%, respectively (Agatston ≥1,000). Per-patient values for CTCA were 100%, 98%, 97%, and 100%, respectively (p < 0.05). CTCA detected 65% prevalence of all CAD (48% non-obstructive), while CACS detected 37% prevalence of all CAD (21% non-obstructive) (p < 0.05).


CACS proved inadequate for the detection of obstructive and non-obstructive CAD compared with CTCA. CTCA has a high diagnostic accuracy for the detection of non-obstructive and obstructive CAD in high-risk asymptomatic patients with inconclusive or unfeasible stress test results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others


  1. Naghavi M, Libby P, Falk E et al (2003) From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: part I. Circulation 108:1664–1672

    Article  PubMed  Google Scholar 

  2. Naghavi M, Libby P, Falk E et al (2003) From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: part II. Circulation 108:1772–1778

    Article  PubMed  Google Scholar 

  3. Agatston AS, Janowitz WR, Hildner FJ, Zusmer NR, Viamonte M Jr, Detrano R (1990) Quantification of coronary artery calcium using ultrafast computed tomography. J Am Coll Cardiol 15:827–832

    Article  CAS  PubMed  Google Scholar 

  4. Greenland P, LaBree L, Azen SP, Doherty TM, Detrano RC (2004) Coronary artery calcium score combined with Framingham score for risk prediction in asymptomatic individuals. JAMA 291:210–215

    Article  CAS  PubMed  Google Scholar 

  5. Shaw LJ, Raggi P, Schisterman E, Berman DS, Callister TQ (2003) Prognostic value of cardiac risk factors and coronary artery calcium screening for all-cause mortality. Radiology 228:826–833

    Article  PubMed  Google Scholar 

  6. Palumbo AA, Maffei E, Martini C et al (2009) Coronary calcium score as gatekeeper for 64-slice computed tomography coronary angiography in patients with chest pain: per-segment and per-patient analysis. Eur Radiol 19:2127-2135

    Google Scholar 

  7. Cademartiri F (2006) Is calcium the key for the assessment of progression/regression of coronary artery disease. Heart 92:1187–1188

    Article  CAS  PubMed  Google Scholar 

  8. Pugliese F, Mollet NR, Runza G et al (2006) Diagnostic accuracy of non-invasive 64-slice CT coronary angiography in patients with stable angina pectoris. Eur Radiol 16:575–582

    Article  PubMed  Google Scholar 

  9. Pugliese F, Mollet NR, Hunink MG et al (2008) Diagnostic performance of coronary CT angiography by using different generations of multisection scanners: single-center experience. Radiology 246:384–393

    Article  PubMed  Google Scholar 

  10. Achenbach S, Moselewski F, Ropers D et al (2004) Detection of calcified and noncalcified coronary atherosclerotic plaque by contrast-enhanced, submillimeter multidetector spiral computed tomography: a segment-based comparison with intravascular ultrasound. Circulation 109:14–17

    Article  PubMed  Google Scholar 

  11. Leber AW, Knez A, von Ziegler F et al (2005) Quantification of obstructive and nonobstructive coronary lesions by 64-slice computed tomography a comparative study with quantitative coronary angiography and intravascular ultrasound. J Am Coll Cardiol 46:147–154

    Article  PubMed  Google Scholar 

  12. Bluemke DA, Achenbach S, Budoff M et al (2008) Noninvasive coronary artery imaging: magnetic resonance angiography and multidetector computed tomography angiography: a scientific statement from the American heart association committee on cardiovascular imaging and intervention of the council on cardiovascular radiology and intervention, and the councils on clinical cardiology and cardiovascular disease in the young. Circulation 118:586–606

    Article  PubMed  Google Scholar 

  13. Rivera JJ, Nasir K, Choi EK et al (2009) Detection of occult coronary artery disease in asymptomatic individuals with diabetes mellitus using non-invasive cardiac angiography. Atherosclerosis 203:442–448

    Article  CAS  PubMed  Google Scholar 

  14. Choi EK, Choi SI, Rivera JJ et al (2008) Coronary computed tomography angiography as a screening tool for the detection of occult coronary artery disease in asymptomatic individuals. J Am Coll Cardiol 52:357–365

    Article  PubMed  Google Scholar 

  15. Romeo F, Leo R, Clementi F et al (2007) Multislice computed tomography in an asymptomatic high-risk population. Am J Cardiol 99:325–328

    Article  PubMed  Google Scholar 

  16. Cademartiri F, La Grutta L, Palumbo AA et al (2006) Coronary plaque imaging with multislice computed tomography: technique and clinical applications. Eur Radiol 16(Suppl 7):M44–M53

    PubMed  Google Scholar 

  17. Budoff MJ, Nasir K, McClelland RL et al (2009) Coronary calcium predicts events better with absolute calcium scores than age-sex-race/ethnicity percentiles: MESA (Multi-Ethnic Study of Atherosclerosis). J Am Coll Cardiol 53:345–352

    Article  CAS  PubMed  Google Scholar 

  18. Austen WG, Edwards JE, Frye RL et al (1975) A reporting system on patients evaluated for coronary artery disease. Report of the Ad Hoc Committee for Grading of Coronary Artery Disease, Council on Cardiovascular Surgery, American Heart Association. Circulation 51:5–40

    CAS  PubMed  Google Scholar 

  19. Miller JM, Dewey M, Vavere AL et al (2009) Coronary CT angiography using 64 detector rows: methods and design of the multi-centre trial CORE-64. Eur Radiol 19:816–828

    Article  PubMed  Google Scholar 

  20. Budoff MJ, Dowe D, Jollis JG et al (2008) Diagnostic performance of 64-multidetector row coronary computed tomographic angiography for evaluation of coronary artery stenosis in individuals without known coronary artery disease: results from the prospective multicenter ACCURACY (Assessment by Coronary Computed Tomographic Angiography of Individuals Undergoing Invasive Coronary Angiography) trial. J Am Coll Cardiol 52:1724–1732

    Article  PubMed  Google Scholar 

  21. Marano R, De Cobelli F, Floriani I et al (2009) Italian multicenter, prospective study to evaluate the negative predictive value of 16- and 64-slice MDCT imaging in patients scheduled for coronary angiography (NIMISCAD-Non Invasive Multicenter Italian Study for Coronary Artery Disease). Eur Radiol 19:1114–1123

    Article  PubMed  Google Scholar 

  22. Mowatt G, Cummins E, Waugh N et al (2008) Systematic review of the clinical effectiveness and cost-effectiveness of 64-slice or higher computed tomography angiography as an alternative to invasive coronary angiography in the investigation of coronary artery disease. Health Technol Assess 12:iii–iv, ix–143

    CAS  Google Scholar 

  23. Di Tanna GL, Berti E, Stivanello E et al (2008) Informative value of clinical research on multislice computed tomography in the diagnosis of coronary artery disease: a systematic review. Int J Cardiol 130:386–404

    Article  PubMed  Google Scholar 

  24. Miller JM, Rochitte CE, Dewey M et al (2008) Diagnostic performance of coronary angiography by 64-row CT. N Engl J Med 359:2324–2336

    Article  CAS  PubMed  Google Scholar 

  25. Akram K, O’Donnell RE, King S, Superko HR, Agatston A, Voros S (2009) Influence of symptomatic status on the prevalence of obstructive coronary artery disease in patients with zero calcium score. Atherosclerosis 203:533–537

    Article  CAS  PubMed  Google Scholar 

  26. Becker CR, Majeed A, Crispin A et al (2005) CT measurement of coronary calcium mass: impact on global cardiac risk assessment. Eur Radiol 15:96–101

    Article  PubMed  Google Scholar 

  27. Marwan M, Ropers D, Pflederer T, Daniel WG, Achenbach S (2009) Clinical characteristics of patients with obstructive coronary lesions in the absence of coronary calcification: an evaluation by coronary CT angiography. Heart 95:1056–1060

    Article  CAS  PubMed  Google Scholar 

  28. Rubinshtein R, Gaspar T, Halon DA, Goldstein J, Peled N, Lewis BS (2007) Prevalence and extent of obstructive coronary artery disease in patients with zero or low calcium score undergoing 64-slice cardiac multidetector computed tomography for evaluation of a chest pain syndrome. Am J Cardiol 99:472–475

    Article  PubMed  Google Scholar 

  29. Kelly JL, Thickman D, Abramson SD et al (2008) Coronary CT angiography findings in patients without coronary calcification. AJR Am J Roentgenol 191:50–55

    Article  PubMed  Google Scholar 

  30. Hendel RC, Berman DS, Di Carli MF et al (2009) ACCF/ASNC/ACR/AHA/ASE/SCCT/SCMR/SNM 2009 Appropriate use criteria for cardiac radionuclide imaging. A report of the American College of Cardiology Foundation Appropriate Use Criteria Task Force, the American Society of Nuclear Cardiology, the American College of Radiology, the American Heart Association, the American Society of Echocardiography, the Society of Cardiovascular Computed Tomography, the Society for Cardiovascular Magnetic Resonance, and the Society of Nuclear Medicine. Circulation 119:e561–e587

    Article  PubMed  Google Scholar 

  31. Mowatt G, Cook JA, Hillis GS et al (2008) 64-Slice computed tomography angiography in the diagnosis and assessment of coronary artery disease: systematic review and meta-analysis. Heart 94:1386–1393

    Article  CAS  PubMed  Google Scholar 

  32. Hausleiter J, Meyer T, Hermann F et al (2009) Estimated radiation dose associated with cardiac CT angiography. JAMA 301:500–507

    Article  CAS  PubMed  Google Scholar 

  33. Arnoldi E, Johnson TR, Rist C et al (2009) Adequate image quality with reduced radiation dose in prospectively triggered coronary CTA compared with retrospective techniques. Eur Radiol 19:2147-2155

    Google Scholar 

  34. Weustink AC, Mollet NR, Neefjes LA et al (2009) Preserved diagnostic performance of dual-source CT coronary angiography with reduced radiation exposure and cancer risk. Radiology 252:53–60

    Article  PubMed  Google Scholar 

  35. Achenbach S, Marwan M, Schepis T et al (2009) High-pitch spiral acquisition: a new scan mode for coronary CT angiography. J Cardiovasc Comput Tomogr 3:117–121

    Article  PubMed  Google Scholar 

  36. Hausleiter J, Bischoff B, Hein F et al (2009) Feasibility of dual-source cardiac CT angiography with high-pitch scan protocols. J Cardiovasc Comput Tomogr. 3:236–242

    Article  PubMed  Google Scholar 

  37. Achenbach S, Lell MM, Marwan M et al (2009) Prospectively ECG-triggered high-pitch spiral acquisition for coronary CT angiography using dual source CT: technique and initial experience. Eur Radiology. doi:10.1007/s00330-009-1558-4

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Filippo Cademartiri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cademartiri, F., Maffei, E., Palumbo, A. et al. Coronary calcium score and computed tomography coronary angiography in high-risk asymptomatic subjects: assessment of diagnostic accuracy and prevalence of non-obstructive coronary artery disease. Eur Radiol 20, 846–854 (2010).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: