Skip to main content
Log in

Volumetric quantification of myocardial perfusion using analysis of multi-detector computed tomography 3D datasets: comparison with nuclear perfusion imaging

  • Cardiac
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Background

Although the ability of multi-detector computed tomography (MDCT) to detect perfusion abnormalities associated with acute and chronic myocardial infarction (MI) has been demonstrated, this methodology is based on visual interpretation of selected 2D slices.

Objectives

We sought to develop a new technique for quantitative volumetric analysis of myocardial perfusion from 3D datasets and test it against resting nuclear myocardial perfusion imaging (NMPI) reference.

Methods

We studied 44 patients undergoing CTCA: a control group of 15 patients and a study group of 29 patients. MDCT datasets acquired for CTCA were analyzed using custom software designed to: (1) generate bull’s eye display of myocardial perfusion and (2) calculate a quantitative index of extent and severity of perfusion abnormality, QH, for 16 volumetric myocardial segments. Visual interpretation of MDCT-derived bull’s eyes was compared with rest NMPI scores using kappa statistics of agreement on a coronary territory and patient basis. Quantitative MDCT perfusion data were correlated with rest NMPI summed scores and used for objective detection of perfusion defects.

Results

Visual analysis of MDCT-derived bull’s eyes accurately detected perfusion defects in agreement with NMPI (kappa = 0.70 by territory; 0.79 by patient). Quantitative data were in good agreement with NMPI, as reflected by: (1) correlation of 0.87 (territory) and 0.84 (patient) between summed QH and NMPI scores, (2) area under ROC curve 0.87 with sensitivity of 0.79–0.92, specificity 0.83–0.91, and accuracy 0.83–0.89 for objective detection of abnormalities.

Conclusions

Our new technique for volumetric analysis of 3D MDCT images allows accurate objective detection of perfusion defects. This perfusion information can be obtained without additional radiation or contrast load, and may aid in elucidating the significance of coronary lesions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. de Roos A, Kroft LJ, Bax JJ, Geleijns J (2007) Applications of multislice computed tomography in coronary artery disease. J Magn Reson Imaging 26:14–22

    Article  PubMed  Google Scholar 

  2. Deetjen AG, Conradi G, Mollmann S et al (2007) Diagnostic value of the 16-detector row multislice spiral computed tomography for the detection of coronary artery stenosis in comparison to invasive coronary angiography. Clin Cardiol 30:118–123

    Article  PubMed  Google Scholar 

  3. Schroeder S, Achenbach S, Bengel F et al (2008) Cardiac computed tomography: indications, applications, limitations, and training requirements: Report of a Writing Group deployed by the Working Group Nuclear Cardiology and Cardiac CT of the European Society of Cardiology and the European Council of Nuclear Cardiology. Eur Heart J 29:531–556

    Article  PubMed  Google Scholar 

  4. Mahnken AH, Koos R, Katoh M et al (2005) Assessment of myocardial viability in reperfused acute myocardial infarction using 16-slice computed tomography in comparison to magnetic resonance imaging. J Am Coll Cardiol 45:2042–2047

    Article  PubMed  Google Scholar 

  5. Nikolaou K, Sanz J, Poon M et al (2005) Assessment of myocardial perfusion and viability from routine contrast-enhanced 16-detector-row computed tomography of the heart: preliminary results. Eur Radiol 15:864–871

    Article  PubMed  Google Scholar 

  6. Gerber BL, Belge B, Legros GJ et al (2006) Characterization of acute and chronic myocardial infarcts by multidetector computed tomography: comparison with contrast-enhanced magnetic resonance. Circulation 113:823–833

    Article  PubMed  Google Scholar 

  7. Henneman MM, Schuijf JD, Jukema JW et al (2006) Comprehensive cardiac assessment with multislice computed tomography: evaluation of left ventricular function and perfusion in addition to coronary anatomy in patients with previous myocardial infarction. Heart 92:1779–1783

    Article  CAS  PubMed  Google Scholar 

  8. Nieman K, Cury RC, Ferencik M et al (2006) Differentiation of recent and chronic myocardial infarction by cardiac computed tomography. Am J Cardiol 98:303–308

    Article  PubMed  Google Scholar 

  9. Mahnken AH, Bruners P, Stanzel S et al (2008) Functional imaging in the assessment of myocardial infarction: MR imaging vs. MDCT vs. SPECT. Eur J Radiol. doi:10.1016/j.ejrad.2008.06.003

  10. Hoffmann U, Millea R, Enzweiler C et al (2004) Acute myocardial infarction: contrast-enhanced multi-detector row CT in a porcine model. Radiology 231:697–701

    Article  PubMed  Google Scholar 

  11. Lardo AC, Cordeiro MA, Silva C et al (2006) Contrast-enhanced multidetector computed tomography viability imaging after myocardial infarction: characterization of myocyte death, microvascular obstruction, and chronic scar. Circulation 113:394–404

    Article  PubMed  Google Scholar 

  12. Brodoefel H, Klumpp B, Reimann A et al (2007) Sixty-four-MSCT in the characterization of porcine acute and subacute myocardial infarction: determination of transmurality in comparison to magnetic resonance imaging and histopathology. Eur J Radiol 62:235–246

    Article  CAS  PubMed  Google Scholar 

  13. Boll DT, Merkle EM, Paulson EK, Hoffmann MH (2008) Assessment of the myocardium on 2-phase cardiac multidetector computed tomography: does cyclic cardiac contraction influence myocardial attenuation? J Comput Assist Tomogr 32:602–608

    Article  PubMed  Google Scholar 

  14. Kachenoura N, Lodato JA, Gaspar T et al (2009) Value of multi-detector computed tomography evaluation of myocardial perfusion in the assessment of ischemic heart disease: Comparison with nuclear perfusion imaging. Eur Radiol 19:1897–1905 doi:10.1007/s00330-009-1365-y

    Google Scholar 

  15. Kachenoura N, Gaspar T, Lodato JA et al (2009) Combined assessment of coronary anatomy and myocardial perfusion using multi-detector computed tomography for the evaluation of coronary artery disease: Validation against invasive coronary angiography. Am J Cardiol 103:1487–1494 doi:10.1016/j.amjcard.2009.02.005

    Google Scholar 

  16. Cerqueira MD, Weissman NJ, Dilsizian V et al (2002) Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: a statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation 105:539–542

    Article  PubMed  Google Scholar 

  17. Corsi C, Lang RM, Veronesi F et al (2005) Volumetric quantification of global and regional left ventricular function from real-time three-dimensional echocardiographic images. Circulation 112:1161–1170

    Article  PubMed  Google Scholar 

  18. Kuettner A, Kopp AF, Schroeder S et al (2004) Diagnostic accuracy of multidetector computed tomography coronary angiography in patients with angiographically proven coronary artery disease. J Am Coll Cardiol 43:831–839

    Article  PubMed  Google Scholar 

  19. Hacker M, Jakobs T, Matthiesen F et al (2007) Combined functional and morphological imaging consisting of gated myocardial perfusion SPECT and 16-detector multislice spiral CT angiography in the noninvasive evaluation of coronary artery disease: first experiences. Clin Imaging 31:313–320

    Article  PubMed  Google Scholar 

  20. Schuijf JD, Wijns W, Jukema JW et al (2006) Relationship between noninvasive coronary angiography with multi-slice computed tomography and myocardial perfusion imaging. J Am Coll Cardiol 48:2508–2514

    Article  PubMed  Google Scholar 

  21. Schuijf JD, Wijns W, Jukema JW et al (2006) A comparative regional analysis of coronary atherosclerosis and calcium score on multislice CT versus myocardial perfusion on SPECT. J Nucl Med 47:1749–1755

    PubMed  Google Scholar 

  22. van Werkhoven JM, Schuijf JD, Jukema JW et al (2008) Anatomic correlates of a normal perfusion scan using 64-slice computed tomographic coronary angiography. Am J Cardiol 101:40–45

    Article  PubMed  Google Scholar 

  23. Choe YH, Choo KS, Jeon ES et al (2008) Comparison of MDCT and MRI in the detection and sizing of acute and chronic myocardial infarcts. Eur J Radiol 66:292–299

    Article  PubMed  Google Scholar 

  24. George RT, Silva C, Cordeiro MA et al (2006) Multidetector computed tomography myocardial perfusion imaging during adenosine stress. J Am Coll Cardiol 48:153–160

    Article  PubMed  Google Scholar 

  25. George RT, Jerosch-Herold M, Silva C et al (2007) Quantification of myocardial perfusion using dynamic 64-detector computed tomography. Invest Radiol 42:815–822

    Article  PubMed  Google Scholar 

  26. Groves AM, Goh V, Rajasekharan S et al (2008) CT coronary angiography: quantitative assessment of myocardial perfusion using test bolus data-initial experience. Eur Radiol 18:2155–2163

    Article  PubMed  Google Scholar 

  27. Kurata A, Mochizuki T, Koyama Y et al (2005) Myocardial perfusion imaging using adenosine triphosphate stress multi-slice spiral computed tomography: alternative to stress myocardial perfusion scintigraphy. Circ J 69:550–557

    Article  PubMed  Google Scholar 

  28. Kido T, Kurata A, Higashino H et al (2008) Quantification of regional myocardial blood flow using first-pass multidetector-row computed tomography and adenosine triphosphate in coronary artery disease. Circ J 72:1086–1091

    Article  PubMed  Google Scholar 

  29. Limbruno U, Petronio AS, Amoroso G et al (2000) The impact of coronary artery disease on the coronary vasomotor response to nonionic contrast media. Circulation 101:491–497

    CAS  PubMed  Google Scholar 

  30. Bardo DM, Kachenoura N, Newby B, Lang RM, Mor-Avi V (2008) Multidetector computed tomography evaluation of left ventricular volumes: sources of error and guidelines for their minimization. J Cardiovasc Comput Tomogr 2:222–230

    Article  PubMed  Google Scholar 

  31. Bastarrika G, Arraiza M, Pueyo JC et al (2008) Quantification of left ventricular function and mass in cardiac Dual-Source CT (DSCT) exams: comparison of manual and semiautomatic segmentation algorithms. Eur Radiol 18:939–946

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor Mor-Avi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kachenoura, N., Veronesi, F., Lodato, J.A. et al. Volumetric quantification of myocardial perfusion using analysis of multi-detector computed tomography 3D datasets: comparison with nuclear perfusion imaging. Eur Radiol 20, 337–347 (2010). https://doi.org/10.1007/s00330-009-1552-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-009-1552-x

Keywords

Navigation