Skip to main content
Log in

Gastrointestinal 18F-FDG accumulation on PET without a corresponding CT abnormality is not an early indicator of cancer development

  • Nuclear Medicine
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Focal gastrointestinal 2-deoxy-2-[18F]-fluoro-D-glucose (FDG) uptake can frequently be found on FDG-PET/CT even in patients without known gastrointestinal malignancy. The aim of this study was to evaluate whether increased gastrointestinal FDG uptake without CT correlate is an early indicator of patients developing gastrointestinal malignancies. A total of 1,006 patients without esophagogastric or anorectal malignancies underwent FDG-PET/CT. The esophagogastric junction, the stomach and the anorectum were evaluated for increased FDG uptake. Patients without elevated uptake were assigned to group A, patients with elevated uptake were allocated to group B. The SUVmax values of both groups were tested for significant differences using the U test. A follow-up of longer than 1 year (mean 853 ± 414 days) served as gold standard. A total of 460 patients had to be excluded based on insufficient follow-up data. For the remaining 546 patients the mean SUVmax was as follows: (a) esophagogastric junction, group A 3.1 ± 0.66, group B 4.0 ± 1.11, p < 0.01; (b) stomach, group A 2.8 ± 0.77, group B 4.1 ± 1.33, p < 0.01; (c) rectal ampulla, group A 2.8 ± 0.83, group B 3.9 ± 1.49, p < 0.01; (d) anal canal, group A 2.7 ± 0.55, group B 3.9 ± 1.59, p < 0.01. Only one patient developed gastric cancer. In the case of an unremarkable CT, elevated esophagogastric or anorectal FDG uptake does not predict cancer development and does not have to be investigated further.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Townsend DW (2008) Positron emission tomography/computed tomography. Semin Nucl Med 38:152–166

    Article  PubMed  Google Scholar 

  2. Townsend DW (2008) Multimodality imaging of structure and function. Phys Med Biol 53:R1–R39

    Article  PubMed  CAS  Google Scholar 

  3. Blodgett TM, Meltzer CC, Townsend DW (2007) PET/CT: form and function. Radiology 242:360–385

    Article  PubMed  Google Scholar 

  4. Antoch G, Vogt FM, Freudenberg LS et al (2003) Whole-body dual-modality PET/CT and whole-body MRI for tumor staging in oncology. JAMA 290:3199–3206

    Article  PubMed  CAS  Google Scholar 

  5. Antoch G, Saoudi N, Kuehl H et al (2004) Accuracy of whole-body dual-modality fluorine-18-2-fluoro-2-deoxy-D-glucose positron emission tomography and computed tomography (FDG-PET/CT) for tumor staging in solid tumors: comparison with CT and PET. J Clin Oncol 22:4357–4368

    Article  PubMed  Google Scholar 

  6. Antoch G, Vogt FM, Bockisch A et al (2004) Whole-body tumor staging: MRI or FDG-PET/CT? Radiologe 44:882–888

    Article  PubMed  CAS  Google Scholar 

  7. Antoch G, Kaiser GM, Mueller AB et al (2004) Intraoperative radiation therapy in liver tissue in a pig model: monitoring with dual-modality PET/CT. Radiology 230:753–760

    Article  PubMed  Google Scholar 

  8. Stahl A, Ott K, Weber WA et al (2003) FDG PET imaging of locally advanced gastric carcinomas: correlation with endoscopic and histopathological findings. Eur J Nucl Med Mol Imaging 30:288–295

    PubMed  CAS  Google Scholar 

  9. Stahl A, Weber WA, Avril N et al (2000) Effect of N-butylscopolamine on intestinal uptake of fluorine-18-fluorodeoxyglucose in PET imaging of the abdomen. Nuklearmedizin 39:241–245

    PubMed  CAS  Google Scholar 

  10. Wahl RL, Kaminski MS, Ethier SP et al (1990) The potential of 2-deoxy-2[18F]fluoro-D-glucose (FDG) for the detection of tumor involvement in lymph nodes. J Nucl Med 31:1831–1835

    PubMed  CAS  Google Scholar 

  11. Kamel EM, Thumshirn M, Truninger K et al (2004) Significance of incidental 18F-FDG accumulations in the gastrointestinal tract in PET/CT: correlation with endoscopic and histopathologic results. J Nucl Med 45:1804–1810

    PubMed  Google Scholar 

  12. Rosenbaum SJ, Lind T, Antoch G et al (2006) False-positive FDG PET uptake—the role of PET/CT. Eur Radiol 16:1054–1065

    Article  PubMed  Google Scholar 

  13. Wahl RL (1996) Targeting glucose transporters for tumor imaging: “sweet” idea, “sour” result. J Nucl Med 37:1038–1041

    PubMed  CAS  Google Scholar 

  14. Abouzied MM, Crawford ES, Nabi HA (2005) 18F-FDG imaging: pitfalls and artifacts. J Nucl Med Technol 33:145–55

    PubMed  Google Scholar 

  15. Prabhakar HB, Sahani DV, Fischman AJ et al (2007) Bowel hot spots at PET-CT. Radiographics 27:145–159

    Article  PubMed  Google Scholar 

  16. Cohade C, Osman M, Nakamoto Y et al (2003) Initial experience with oral contrast in PET/CT: phantom and clinical studies. J Nucl Med 44:412–416

    PubMed  Google Scholar 

  17. Antoch G, Kuehl H, Kanja J et al (2004) Dual-modality PET/CT scanning with negative oral contrast agent to avoid artifacts: introduction and evaluation. Radiology 230:879–885

    Article  PubMed  Google Scholar 

  18. Beyer T, Antoch G, Blodgett T et al (2003) Dual-modality PET/CT imaging: the effect of respiratory motion on combined image quality in clinical oncology. Eur J Nucl Med Mol Imaging 30:588–596

    PubMed  Google Scholar 

  19. Cook GJ, Fogelman I, Maisey MN (1996) Normal physiological and benign pathological variants of 18-fluoro-2-deoxyglucose positron-emission tomography scanning: potential for error in interpretation. Semin Nucl Med 26:308–314

    Article  PubMed  CAS  Google Scholar 

  20. Cook GJ, Maisey MN, Fogelman I (1999) Normal variants, artefacts and interpretative pitfalls in PET imaging with 18-fluoro-2-deoxyglucose and carbon-11 methionine. Eur J Nucl Med 26:1363–1378

    Article  PubMed  CAS  Google Scholar 

  21. Fukunaga T, Okazumi S, Koide Y et al (1998) Evaluation of esophageal cancers using fluorine-18-fluorodeoxyglucose PET. J Nucl Med 39:1002–1007

    PubMed  CAS  Google Scholar 

  22. Metser U, Even-Sapir E (2007) Increased (18)F-fluorodeoxyglucose uptake in benign, nonphysiologic lesions found on whole-body positron emission tomography/computed tomography (PET/CT): accumulated data from four years of experience with PET/CT. Semin Nucl Med 37:206–222

    Article  PubMed  Google Scholar 

  23. Shreve PD, Anzai Y, Wahl RL (1999) Pitfalls in oncologic diagnosis with FDG PET imaging: physiologic and benign variants. Radiographics 19:61–77

    PubMed  CAS  Google Scholar 

  24. Salaun PY, Grewal RK, Dodamane I et al (2005) An analysis of the 18F-FDG uptake pattern in the stomach. J Nucl Med 46:48–51

    PubMed  Google Scholar 

  25. Stringer AM, Gibson RJ, Bowen JM et al (2007) Chemotherapy-induced mucositis: the role of gastrointestinal microflora and mucins in the luminal environment. J Support Oncol 5:259–267

    PubMed  CAS  Google Scholar 

  26. Wang Y, Chiu E, Rosenberg J et al (2007) Standardized uptake value atlas: characterization of physiological 2-deoxy-2-[18F]fluoro-D-glucose uptake in normal tissues. Mol Imaging Biol 9:83–90

    Article  PubMed  Google Scholar 

  27. Zincirkeser S, Sahin E, Halac M et al (2007) Standardized uptake values of normal organs on 18F-fluorodeoxyglucose positron emission tomography and computed tomography imaging. J Int Med Res 35:231–236

    PubMed  CAS  Google Scholar 

  28. Capirci C, Rampin L, Erba PA et al (2007) Sequential FDG-PET/CT reliably predicts response of locally advanced rectal cancer to neo-adjuvant chemo-radiation therapy. Eur J Nucl Med Mol Imaging 34:1583–1593

    Article  PubMed  CAS  Google Scholar 

  29. Cheze-Le Rest C, Metges JP, Teyton P et al (2008) Prognostic value of initial fluorodeoxyglucose-PET in esophageal cancer: a prospective study. Nucl Med Commun 29:628–635

    Article  PubMed  CAS  Google Scholar 

  30. Mochiki E, Kuwano H, Katoh H et al (2004) Evaluation of 18F-2-deoxy-2-fluoro-D-glucose positron emission tomography for gastric cancer. World J Surg 28:247–253

    Article  PubMed  Google Scholar 

  31. Blecker D, Abraham S, Furth EE et al (1999) Melanoma in the gastrointestinal tract. Am J Gastroenterol 94:3427–3433

    Article  PubMed  CAS  Google Scholar 

  32. Liang KV, Sanderson SO, Nowakowski GS et al (2006) Metastatic malignant melanoma of the gastrointestinal tract. Mayo Clin Proc 81:511–516

    Article  PubMed  Google Scholar 

  33. Schuchter LM, Green R, Fraker D (2000) Primary and metastatic diseases in malignant melanoma of the gastrointestinal tract. Curr Opin Oncol 12:181–185

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerald Antoch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heusner, T.A., Hahn, S., Hamami, M.E. et al. Gastrointestinal 18F-FDG accumulation on PET without a corresponding CT abnormality is not an early indicator of cancer development. Eur Radiol 19, 2171–2179 (2009). https://doi.org/10.1007/s00330-009-1405-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-009-1405-7

Keywords

Navigation