Skip to main content

Advertisement

Log in

Italian multicenter, prospective study to evaluate the negative predictive value of 16- and 64-slice MDCT imaging in patients scheduled for coronary angiography (NIMISCAD-Non Invasive Multicenter Italian Study for Coronary Artery Disease)

  • Cardiac
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

This was a prospective, multicenter study designed to evaluate the utility of MDCT in the diagnosis of coronary artery disease (CAD) in patients scheduled for elective coronary angiography (CA) using different MDCT systems from different manufacturers. Twenty national sites prospectively enrolled 367 patients between July 2004 and June 2006. Computed tomography (CT) was performed using a standardized/optimized scan protocol for each type of MDCT system (≥16 slices) and compared with quantitative CA performed within 2 weeks of MDCT. A total of 284 patients (81%) were studied by 16-slice MDCT systems, while 66 patients (19%) by 64-slice MDCT scanners. The primary analysis was on-site/off-site evaluation of the negative predictive value (NPV) on a per-patient basis. Secondary analyses included on-site evaluation on a per-artery and per-segment basis. On-site evaluation included 327 patients (CAD prevalence 58%). NPV, positive predictive value (PPV), sensitivity, specificity, and diagnostic accuracy (DA) were 0.91 (95% CI 0.85–0.95), 0.91 (95% CI 0.86–0.95), 0.94 (95% CI 0.89–0.97), 0.88 (95% CI 0.81–0.93), and 0.91 (95% CI 0.88–0.94), respectively. Off-site analysis included 295 patients (CAD prevalence 56%). NPV, PPV, sensitivity, specificity, and DA were 0.73 (95% CI 0.65–0.79), 0.93 (95% CI 0.87–0.97), 0.73 (95% CI 0.65–0.79), 0.93 (95% CI 0.87–0.97), and 0.82 (95% CI 0.77–0.86), respectively. The results of this study demonstrate the utility of MDCT in excluding significant CAD even when conducted by centers with varying degrees of expertise and using different MDCT machines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Topol EJ, Nissen SE (1995) Our preoccupation with coronary luminology. The dissociation between clinical and angiographic findings in ischemic heart disease. Circulation 92:2333–2342

    PubMed  CAS  Google Scholar 

  2. Davidson CJ, Fishman RF, Bonow RO (1997) Cardiac catheterization. In: Braunwald E (ed) Heart disease: A textbook of cardiovascular medicine. WB Saunders, Philadelphia, Pa, pp 177–203

    Google Scholar 

  3. Haberl R, Becker A, Leber A et al (2001) Correlation of coronary calcification and angiographically documented stenoses in patients with suspected coronary artery disease: results of 1.764 patients. J Am Coll Cardiol 37:451–457

    Article  PubMed  CAS  Google Scholar 

  4. Thom T, Haase N, Rosamond W et al (2006) American Heart Association Statistics Committee and Stroke Statistics Subcommittee. AHA Statistical Update. Heart Disease and Stroke Statistics-2006 Update. A Report From the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation 113(6):e85–151

    Article  PubMed  Google Scholar 

  5. Austen WG, Edwards JE, Frye RL et al (1975) A reporting system on patients evaluated for coronary artery disease. Report of the Ad-Hoc Committee for Grading of Coronary Artery Disease, Council on Cardiovascular Surgery. Circulation 51:5–40

    PubMed  CAS  Google Scholar 

  6. Expert Panel on Detection, Evaluation and Treatment of High Blood Cholesterol in Adults. Executive Summary of the Third Report of the National Cholesterol Education Program/Adult treatment Panel III (2001) JAMA 285:2846–2897

  7. Achenbach S, Ulzheimer S, Baum U et al (2000) Noninvasive coronary angiography by retrospectively ECG-gated multislice spiral CT. Circulation 102:2823–2828

    PubMed  CAS  Google Scholar 

  8. Nieman K, Oudkerk M, Rensing BJ et al (2001) Coronary angiography with multi-slice computed tomography. Lancet 357:599–603

    Article  PubMed  CAS  Google Scholar 

  9. Achenbach S, Giesler T, Ropers D et al (2001) Detection of coronary artery stenoses by contrast-enhanced, retrospectively electrocardiographically gated, multislice spiral computed tomography. Circulation 103:2535–2538

    PubMed  CAS  Google Scholar 

  10. Vogl TJ, Abolmaali ND, Diebold T et al (2002) Techniques for the detection of coronary atherosclerosis: multi-detector row CT coronary angiography. Radiology 223:212–220

    Article  PubMed  Google Scholar 

  11. Kopp AF, Schroeder S, Kuettner A et al (2002) Non-invasive coronary angiography with high resolution multidetector-row computed tomography. Results in 102 patients. Eur Heart J 23:1714–1725

    PubMed  CAS  Google Scholar 

  12. Nieman K, Cademartiri F, Lemos PA et al (2002) Reliable noninvasive coronary angiography with fast submillimeter multislice spiral computed tomography. Circulation 106:2051–2054

    Article  PubMed  Google Scholar 

  13. Ropers D, Baum U, Pohle K et al (2003) Detection of coronary artery stenoses with thin-slice multi-detector row spiral computed tomography and multiplanar reconstruction. Circulation 107:664–666

    Article  PubMed  Google Scholar 

  14. Hoffmann U, Moselewski F, Cury RC et al (2004) Predictive value of 16-slice multidetector spiral computed tomography to detect significant obstructive coronary artery disease in patients at high risk for coronary artery disease. Patient- versus segment-based analysis. Circulation 110:2638–2643

    Article  PubMed  Google Scholar 

  15. Kuettner A, Kopp AF, Schroeder S et al (2004) Diagnostic accuracy of multidetector computed tomography coronary angiography in patients with angiographically proven coronary artery disease. J Am Coll Cardiol 43:831–839

    Article  PubMed  Google Scholar 

  16. Mollet NR, Cademartiri F, Nieman K et al (2004) Multislice spiral computed tomography coronary angiography in patients with stable angina pectoris. J Am Coll Cardiol 43:2265–2270

    Article  PubMed  Google Scholar 

  17. Kuettner A, Beck T, Drosch T et al (2005) Diagnostic accuracy of noninvasive coronary imaging using 16-detector slice spiral computed tomography with 188 ms temporal resolution. J Am Coll Cardiol 45:123–127

    Article  PubMed  Google Scholar 

  18. Mollet NR, Cademartiri F, Krestin GP et al (2005) Improved diagnostic accuracy with 16-row multi-slice computed tomography coronary angiography. J Am Coll Cardiol 45:128–132

    Article  PubMed  Google Scholar 

  19. Kaiser C, Bremerich J, Haller S et al (2005) Limited diagnostic yield of non-invasive coronary angiography by 16-slice multi-detector spiral computed tomography in routine patients referred for evaluation of coronary artery disease. Eur Heart J 26:1987–1992

    Article  PubMed  Google Scholar 

  20. Hoffman MH, Shi H, Schmitz BL et al (2005) Non invasive coronary angiography with multislice computed tomography. JAMA 293:2471–2478

    Article  Google Scholar 

  21. Leschka S, Alkadhi H, Plass A et al (2005) Accuracy of MSCT coronary angiography with 64-slice technology: first experience. Eur Heart J 26:1482–1487

    Article  PubMed  Google Scholar 

  22. Raff GL, Gallagher MJ, O’Neill WW et al (2005) Diagnostic accuracy of noninvasive coronary angiography using 64-slice spiral computed tomography. J Am Coll Cardiol 46:552–557

    Article  PubMed  Google Scholar 

  23. Mollet NR, Cademartiri F, van Mieghem CA et al (2005) High-resolution spiral computed tomography coronary angiography in patients referred for diagnostic conventional coronary angiography. Circulation 112:2318–2323

    Article  PubMed  Google Scholar 

  24. Leber AW, Knez A, von Ziegler F et al (2005) Quantification of obstructive and nonobstructive coronary lesions by 64-slice computed tomography. A comparative study with quantitative coronary angiography and intravascular ultrasound. J Am Coll Cardiol 46:147–154

    Article  PubMed  Google Scholar 

  25. Pugliese F, Mollet NR, Runza G et al (2006) Diagnostic accuracy of non-invasive 64-slice CT coronary angiography in patients with stable angina pectoris. Eur Radiol 16:575–582

    Article  PubMed  Google Scholar 

  26. Nikolaou K, Knez A, Rist C et al (2006) Accuracy of 64-MDCT in the diagnosis of ischemic heart disease. Am J Roentgenol 187:111–117

    Article  Google Scholar 

  27. Ehara M, Surmely JF, Kawai M et al (2006) Diagnostic accuracy of 64-slice computed tomography for detecting angiographically significant coronary artery stenosis in an unselected consecutive patient population: Comparison with conventional invasive angiography. Circ J 70:564–571

    Article  PubMed  Google Scholar 

  28. Ropers D, Rixe J, Anders K et al (2006) Usefulness of multidetector row spiral computed tomography with 64-×0.6-mm collimation and 330-ms rotation for the noninvasive detection of significant coronary artery stenoses. Am J Cardiol 97:343–348

    Article  PubMed  Google Scholar 

  29. U.S. Department of Health and Human Services; Medicare Coverage Database http://www.cms.hhs.gov/mcd/viewmcac.asp?where_index&mid_24 (5 June 2006)

  30. Di Carli MF, Hachamovitch R (2007) New technology for non-invasive evaluation of coronary artery disease. Circulation 115:1464–1480

    Article  PubMed  Google Scholar 

  31. Hamon M, Morello R, Riddell JW et al (2007) Coronary arteries: diagnostic performance of 16- versus 64-section spiral CT compared with invasive coronary angiography — Meta-Analysis. Radiology 245:720–731

    Article  PubMed  Google Scholar 

  32. Garcia MJ, Lessick J, Hoffman MH (2006) Accuracy of 16-row multidetector computed tomography for the assessment of coronary artery stenosis. JAMA 296:403–411

    Article  PubMed  CAS  Google Scholar 

  33. Flohr TG, McCollough CH, Bruder H et al (2006) First performance evaluation of a dual-source CT (DSCT) system. Eur Radiol 16:256–268

    Article  PubMed  Google Scholar 

  34. Achenbach S, Ropers D, Kuettner A et al (2006) Contrast-enhanced coronary artery visualization by dual-source computed tomography—Initial experience. Eur J Radiol 57:331–335

    Article  PubMed  Google Scholar 

  35. Johnson TRC, Nikolaou K, Wintersperger BJ et al (2006) Dual-source CT cardiac imaging: initial experience. Eur Radiol 16:1409–1415

    Article  PubMed  Google Scholar 

  36. Scheffel H, Alkadhi H, Plass A et al (2006) Accuracy of dual-source CT coronary angiography: first experience in a high pre-test probability population without heart rate control. Eur Radiol 16:2739–2747

    Article  PubMed  Google Scholar 

  37. Sampson UK, Dorbala S, Limaye A et al (2007) Diagnostic accuracy of rubidium-82 myocardial perfusion imaging with hybrid positron emission tomography/computed tomography in the detection of coronary artery disease. J Am Coll Cardiol 49:1052–1058

    Article  PubMed  CAS  Google Scholar 

  38. Gaemperli O, Schepis T, Kalff V et al (2007) Validation of a new cardiac image fusion software for three-dimensional integration of myocardial perfusion SPECT and stand-alone 64-slice CT angiography. Eur J Nucl Med Mol Imaging 34:1097–1106

    Article  PubMed  Google Scholar 

  39. Einstein AJ, Henzlova MJ, Rajagopalan S (2007) Estimating risk of cancer associated with radiation exposure from 64-slice computed tomography coronary angiography. JAMA 298(3):317–323

    Article  PubMed  CAS  Google Scholar 

  40. Flohr T, Kuttner A, Bruder H et al (2003) Performance evaluation of a multi-slice CT system with 16-slice detector and increased gantry rotation speed for isotropic submillimeter imaging of the heart. Herz 28(1):7–19

    Article  PubMed  Google Scholar 

  41. Hausleiter J, Meyer T, Hadamitzky M et al (2006) Radiation dose estimates from cardiac multislice computed tomography in daily practice: Impact of different scanning protocols on effective dose estimates. Circulation 113:1305–1310

    Article  PubMed  Google Scholar 

  42. Meijboom WB, van Mieghem CAG, Mollet NR et al (2007) Sixty-four-slice computed tomography coronary angiography in patients with high, intermediate, or low pretest probability of significant coronary artery disease. J Am Coll Cardiol 50:1469–1475

    Article  PubMed  Google Scholar 

  43. Fox K, Alonso Garcia MA, Ardissino D et al (2006) Task Force on the Management of Stable Angina Pectoris of the European Society of Cardiology; ESC Committee for Practice Guidelines (CPG). Eur Heart J 27:1341–1381

    Article  PubMed  Google Scholar 

Download references

Funding

The study was sponsored by the Italian Society of Medical Radiology (SIRM), with the support of Bayer Schering Pharma, Bayer spa, Milan, Italy

Conflict of Interest

None declared

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Riccardo Marano.

Appendix

Appendix

The following Investigators and Institutions participated in NIMISCAD (Non Invasive Multicenter Italian Study for Coronary Artery Disease):

Radiologists:

Marano Riccardo, MD (A. Gemelli Hospital, Catholic University, Rome, Italy); Liguori Carlo, MD (A. Gemelli Hospital, Catholic University, Rome, Italy); Bonomo Lorenzo, MD (A. Gemelli Hospital, Catholic University, Rome, Italy); De Cobelli Francesco MD (S. Raffaele Scientific Institute and Vita-Salute University, Milan, Italy); Esposito Antonio, MD (S. Raffaele Scientific Institute and Vita-Salute University, Milan, Italy); Del Maschio Alessandro, MD (S. Raffaele Scientific Institute and Vita-Salute University, Milan, Italy); Becker Christoph, MD (Ludwig-Maximilians University, Munich, Germany); Herzog Christopher, MD (J.W. Goethe University, Frankfurt, Germany); Centonze Maurizio, MD (S.Chiara Hospital, Trento, Italy); Coser Daniela, MD (S.Chiara Hospital, Trento, Italy); Morana Giovanni, MD (Cà Foncello Hospital, Treviso, Italy); Salviato Elisabetta, MD (Cà Foncello Hospital, Treviso, Italy); Gualdi Gian Franco, MD (DEA Umberto I Hospital, La Sapienza University, Rome, Italy); Casciani Emanuele, MD (DEA Umberto I Hospital, La Sapienza University, Rome, Italy); Ligabue Guido, MD (University of Modena and Reggio Emilia, Italy); Fiocchi Federica, MD (University of Modena and Reggio Emilia, Italy); Pontone Gianluca, MD (Centro Cardiologico Monzino, Milan, Italy); Andreini Daniele, MD (Centro Cardiologico Monzino, Milan, Italy); Catalano Carlo, MD (Umberto I Hospital, La Sapienza University, Rome, Italy); Carbone Iacopo, MD (Umberto I Hospital, La Sapienza University, Rome, Italy); Chiappino Dante, MD (G. Pasquinucci Hospital, Massa, Italy); Midiri Massimo, MD (DIBIMEL, University of Palermo, Italy); Simonetti Giovanni, MD (Tor Vergata University, Rome, Italy); Marchisio Filippo, MD (University of Turin, Italy); Olivetti Lucio, MD (Istituti Ospitalieri of Cremona, Italy); Fattori Rossella, MD (S. Orsola University Hospital, Bologna, Italy); Scardapane Arnaldo, MD (Policlinico of Bari, Italy); Principi Massimo, MD (S. Maria Hospital, Terni, Italy); Romano Luigia, MD (A. Cardarelli Hospital, Naples, Italy); Arcadi Nicola, MD (Ospedali Riuniti of Reggio Calabria, Italy); Profili Manuel, MD (Istituto Clinico Humanitas, Rozzano, Milan, Italy); Volterrani Luca, MD (S. Maria alle Scotte Hospital, University of Siena, Italy).

Cardiologists:

Trani Carlo, MD (A. Gemelli Hospital, Catholic University, Rome, Italy); Colombo Antonio, MD (S. Raffaele Scientific Institute and Vita-Salute University, Milan, Italy); Bonmassari Roberto, MD (S.Chiara Hospital, Trento, Italy); Chirillo Fabio, MD (Cà Foncello Hospital, Treviso, Italy); Pastore Raffaele, MD (DEA Umberto I Hospital, La Sapienza University, Rome, Italy); Modena Maria Grazia, MD (University of Modena and Reggio Emilia, Italy); Bartorelli Antonio, MD (Centro Cardiologico Monzino, Milan, Italy); Gaudio Carlo, MD (Umberto I Hospital, La Sapienza University, Rome, Italy); Vaghetti Marco, MD (G. Pasquinucci Hospital, Massa, Italy); Novo Salvatore, MD (DIBIMEL, University of Palermo, Italy); Romeo Francesco, MD (Tor Vergata University, Rome, Italy); Sheiban Imad, MD (University of Turin, Italy); Pirelli Salvatore, MD (Istituti Ospitalieri of Cremona, Italy); Marzocchi Antonio, MD (S. Orsola University Hospital, Bologna, Italy); Brizio Leonardo Corlianò, MD (Policlinico of Bari, Italy); Dominici Marcello, MD (S. Maria Hospital, Terni, Italy); Caruso Aurelio, MD (A. Cardarelli Hospital, Naples, Italy); Cacciola Maria Teresa, MD (Ospedali Riuniti of Reggio Calabria, Italy); Aldrovandi Annachiara, MD (Istituto Clinico Humanitas, Rozzano, Milan, Italy).

Statistical analysis:

Floriani Irene, PhD (Mario Negri Institute, Milan, Italy); Tinazzi Angelo, CompSc (SENDO-Tech s.r.l. Milan, Italy).

Industrial support:

Ciceri Marco, MD (Bayer Schering Pharma, Bayer spa, Milan, Italy); Gatti Simona, MSc (Bayer Schering Pharma, Bayer spa, Milan, Italy).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marano, R., De Cobelli, F., Floriani, I. et al. Italian multicenter, prospective study to evaluate the negative predictive value of 16- and 64-slice MDCT imaging in patients scheduled for coronary angiography (NIMISCAD-Non Invasive Multicenter Italian Study for Coronary Artery Disease). Eur Radiol 19, 1114–1123 (2009). https://doi.org/10.1007/s00330-008-1239-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-008-1239-8

Keywords

Navigation