Skip to main content
Log in

Coronary CT angiography using 64 detector rows: methods and design of the multi-centre trial CORE-64

  • Cardiac
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Multislice computed tomography (MSCT) for the noninvasive detection of coronary artery stenoses is a promising candidate for widespread clinical application because of its non-invasive nature and high sensitivity and negative predictive value as found in several previous studies using 16 to 64 simultaneous detector rows. A multi-centre study of CT coronary angiography using 16 simultaneous detector rows has shown that 16-slice CT is limited by a high number of nondiagnostic cases and a high false-positive rate. A recent meta-analysis indicated a significant interaction between the size of the study sample and the diagnostic odds ratios suggestive of small study bias, highlighting the importance of evaluating MSCT using 64 simultaneous detector rows in a multi-centre approach with a larger sample size. In this manuscript we detail the objectives and methods of the prospective “CORE-64” trial (“Coronary Evaluation Using Multidetector Spiral Computed Tomography Angiography using 64 Detectors”). This multi-centre trial was unique in that it assessed the diagnostic performance of 64-slice CT coronary angiography in nine centres worldwide in comparison to conventional coronary angiography. In conclusion, the multi-centre, multi-institutional and multi-continental trial CORE-64 has great potential to ultimately assess the per-patient diagnostic performance of coronary CT angiography using 64 simultaneous detector rows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Nieman K, Cademartiri F, Lemos PA, Raaijmakers R, Pattynama PM, de Feyter PJ (2002) Reliable noninvasive coronary angiography with fast submillimeter multislice spiral computed tomography. Circulation 106:2051–2054

    Article  PubMed  Google Scholar 

  2. Ropers D, Baum U, Pohle K et al (2003) Detection of coronary artery stenoses with thin-slice multi-detector row spiral computed tomography and multiplanar reconstruction. Circulation 107:664–666

    Article  PubMed  Google Scholar 

  3. Dewey M, Teige F, Schnapauff D et al (2006) Noninvasive detection of coronary artery stenoses with multislice computed tomography or magnetic resonance imaging. Ann Intern Med 145:407–415

    PubMed  Google Scholar 

  4. Mollet NR, Cademartiri F, Nieman K et al (2004) Multislice spiral computed tomography coronary angiography in patients with stable angina pectoris. J Am Coll Cardiol 43:2265–2270

    Article  PubMed  Google Scholar 

  5. Hoffmann MH, Shi H, Schmitz BL et al (2005) Noninvasive coronary angiography with multislice computed tomography. JAMA 293:2471–2478

    Article  PubMed  CAS  Google Scholar 

  6. Cordeiro MA, Miller JM, Schmidt A et al (2006) Non-invasive half millimetre 32 detector row computed tomography angiography accurately excludes significant stenoses in patients with advanced coronary artery disease and high calcium scores. Heart 92:589–597

    Article  PubMed  CAS  Google Scholar 

  7. Leschka S, Alkadhi H, Plass A et al (2005) Accuracy of MSCT coronary angiography with 64-slice technology: first experience. Eur Heart J 26:1482–1487

    Article  PubMed  Google Scholar 

  8. Leber AW, Knez A, von Ziegler F et al (2005) Quantification of obstructive and nonobstructive coronary lesions by 64-slice computed tomography: a comparative study with quantitative coronary angiography and intravascular ultrasound. J Am Coll Cardiol 46:147–154

    Article  PubMed  Google Scholar 

  9. Raff GL, Gallagher MJ, O’Neill WW, Goldstein JA (2005) Diagnostic accuracy of noninvasive coronary angiography using 64-slice spiral computed tomography. J Am Coll Cardiol 46:552–557

    Article  PubMed  Google Scholar 

  10. Pugliese F, Mollet NR, Runza G et al (2006) Diagnostic accuracy of non-invasive 64-slice CT coronary angiography in patients with stable angina pectoris. Eur Radiol 16:575–582

    Article  PubMed  Google Scholar 

  11. Schuijf JD, Pundziute G, Jukema JW et al (2006) Diagnostic accuracy of 64-slice multislice computed tomography in the noninvasive evaluation of significant coronary artery disease. Am J Cardiol 98:145–148

    Article  PubMed  Google Scholar 

  12. Ropers D, Rixe J, Anders K et al (2006) Usefulness of multidetector row spiral computed tomography with 64- x 0.6-mm collimation and 330-ms rotation for the noninvasive detection of significant coronary artery stenoses. Am J Cardiol 97:343–348

    Article  PubMed  Google Scholar 

  13. Leber AW, Johnson T, Becker A et al (2007) Diagnostic accuracy of dual-source multi-slice CT-coronary angiography in patients with an intermediate pretest likelihood for coronary artery disease. Eur Heart J 28:2354–2360

    Article  PubMed  Google Scholar 

  14. Weustink AC, Meijboom WB, Mollet NR et al (2007) Reliable high-speed coronary computed tomography in symptomatic patients. J Am Coll Cardiol 50:786–794

    Article  PubMed  Google Scholar 

  15. Herzog C, Zwerner PL, Doll JR et al (2007) Significant coronary artery stenosis: comparison on per-patient and per-vessel or per-segment basis at 64-section CT angiography. Radiology 244:112–120

    Article  PubMed  Google Scholar 

  16. Schuijf JD, Bax JJ, Shaw LJ et al (2006) Meta-analysis of comparative diagnostic performance of magnetic resonance imaging and multislice computed tomography for noninvasive coronary angiography. Am Heart J 151:404–411

    Article  PubMed  Google Scholar 

  17. Greenland P (2006) Who is a candidate for noninvasive coronary angiography? Ann Intern Med 145:466–467

    PubMed  Google Scholar 

  18. Budoff MJ, Achenbach S, Blumenthal RS et al (2006) Assessment of coronary artery disease by cardiac computed tomography: a scientific statement from the American Heart Association Committee on Cardiovascular Imaging and Intervention, Council on Cardiovascular Radiology and Intervention, and Committee on Cardiac Imaging, Council on Clinical Cardiology. Circulation 114:1761–1791

    Article  PubMed  Google Scholar 

  19. Jacobs JE, Boxt LM, Desjardins B, Fishman EK, Larson PA, Schoepf J (2006) ACR practice guideline for the performance and interpretation of cardiac computed tomography (CT). J Am Coll Radiol 3:677–685

    Article  PubMed  Google Scholar 

  20. Garcia MJ, Lessick J, Hoffmann MH (2006) Accuracy of 16-row multidetector computed tomography for the assessment of coronary artery stenosis. JAMA 296:403–411

    Article  PubMed  CAS  Google Scholar 

  21. Dewey M, Hoffmann H, Hamm B (2007) CT Coronary Angiography Using 16 and 64 Simultaneous Detector Rows: Intraindividual Comparison. Fortschr Röntgenstr 179:581–586

    Article  CAS  Google Scholar 

  22. Hamon M, Biondi-Zoccai GG, Malagutti P, Agostoni P, Morello R, Valgimigli M (2006) Diagnostic performance of multislice spiral computed tomography of coronary arteries as compared with conventional invasive coronary angiography: a meta-analysis. J Am Coll Cardiol 48:1896–1910

    Article  PubMed  Google Scholar 

  23. Hamon M, Morello R, Riddell JW (2007) Coronary arteries: diagnostic performance of 16- versus 64-section spiral CT compared with invasive coronary angiography-meta-analysis. Radiology 245:720–731

    Article  PubMed  Google Scholar 

  24. Obuchowski NA, McClish DK (1997) Sample size determination for diagnostic accuracy studies involving binormal ROC curve indices. Stat Med 16:1529–1542

    Article  PubMed  CAS  Google Scholar 

  25. Zou KH, O’Malley AJ, Mauri L (2007) Receiver-operating characteristic analysis for evaluating diagnostic tests and predictive models. Circulation 115:654–657

    Article  PubMed  Google Scholar 

  26. Efron B, Tibshirani R (1993) An Introduction to the Bootstrap. Chapman and Hall, New York

    Google Scholar 

  27. Dewey M, Hoffmann H, Hamm B (2006) Multislice CT coronary angiography: effect of sublingual nitroglycerin on the diameter of coronary arteries. Fortschr Röntgenstr 178:600–604

    Article  CAS  Google Scholar 

  28. Dewey M, Laule M, Krug L et al (2004) Multisegment and halfscan reconstruction of 16-slice computed tomography for detection of coronary artery stenoses. Invest Radiol 39:223–229

    Article  PubMed  Google Scholar 

  29. Leschka S, Husmann L, Desbiolles LM et al (2006) Optimal image reconstruction intervals for non-invasive coronary angiography with 64-slice CT. Eur Radiol 16:1964–1972

    Article  PubMed  Google Scholar 

  30. Dewey M, Teige F, Rutsch W, Schink T, Hamm B (2008) CT coronary angiography: Influence of different cardiac reconstruction intervals on image quality and diagnostic accuracy. Eur J Radiol 67(1):92–99 Epub 2007 Sep 4

    Article  PubMed  Google Scholar 

  31. Hoffmann MH, Lessick J, Manzke R et al (2006) Automatic determination of minimal cardiac motion phases for computed tomography imaging: initial experience. Eur Radiol 16:365–373

    Article  PubMed  Google Scholar 

  32. Dewey M, Müller M, Teige F et al (2006) Multisegment and halfscan reconstruction of 16-slice computed tomography for assessment of regional and global left ventricular myocardial function. Invest Radiol 41:400–409

    Article  PubMed  Google Scholar 

  33. Agatston AS, Janowitz WR, Hildner FJ, Zusmer NR, Viamonte M Jr, Detrano R (1990) Quantification of coronary artery calcium using ultrafast computed tomography. J Am Coll Cardiol 15:827–832

    Article  PubMed  CAS  Google Scholar 

  34. Callister TQ, Raggi P, Cooil B, Lippolis NJ, Russo DJ (1998) Effect of HMG-CoA reductase inhibitors on coronary artery disease as assessed by electron-beam computed tomography. N Engl J Med 339:1972–1978

    Article  PubMed  CAS  Google Scholar 

  35. Dewey M, Schnapauff D, Laule M et al (2004) Multislice CT coronary angiography: evaluation of an automatic vessel detection tool. Fortschr Röntgenstr: 478–483

    Google Scholar 

  36. Ringqvist I, Fisher LD, Mock M et al (1983) Prognostic value of angiographic indices of coronary artery disease from the Coronary Artery Surgery Study (CASS). J Clin Invest 71:1854–1866

    Article  PubMed  CAS  Google Scholar 

  37. Alderman E, Stadius M (1992) The angiographie definitions of the Bypass Angioplasty Revascularization Investigation. Cor Art Dis 3:1189–1208

    Google Scholar 

  38. Austen WG, Edwards JE, Frye RL et al (1975) A reporting system on patients evaluated for coronary artery disease. Report of the Ad Hoc Committee for Grading of Coronary Artery Disease, Council on Cardiovascular Surgery, American Heart Association. Circulation 51:5–40

    PubMed  CAS  Google Scholar 

  39. Scanlon PJ, Faxon DP, Audet AM et al (1999) ACC/AHA guidelines for coronary angiography. A report of the American College of Cardiology/American Heart Association Task Force on practice guidelines (Committee on Coronary Angiography). Developed in collaboration with the Society for Cardiac Angiography and Interventions. J Am Coll Cardiol 33:1756–1824

    Article  PubMed  CAS  Google Scholar 

  40. Mollet NR, Cademartiri F, van Mieghem CA et al (2005) High-resolution spiral computed tomography coronary angiography in patients referred for diagnostic conventional coronary angiography. Circulation 112:2318–2323

    Article  PubMed  Google Scholar 

  41. Arnett EN, Isner JM, Redwood DR et al (1979) Coronary artery narrowing in coronary heart disease: comparison of cineangiographic and necropsy findings. Ann Intern Med 91:350–356

    PubMed  CAS  Google Scholar 

  42. Fleming RM, Kirkeeide RL, Smalling RW, Gould KL (1991) Patterns in visual interpretation of coronary arteriograms as detected by quantitative coronary arteriography. J Am Coll Cardiol 18:945–951

    Article  PubMed  CAS  Google Scholar 

  43. Goldberg RK, Kleiman NS, Minor ST, Abukhalil J, Raizner AE (1990) Comparison of quantitative coronary angiography to visual estimates of lesion severity pre and post PTCA. Am Heart J 119:178–184

    Article  PubMed  CAS  Google Scholar 

  44. Orford JL, Denktas AE, Williams BA et al (2004) Routine intravascular ultrasound scanning guidance of coronary stenting is not associated with improved clinical outcomes. Am Heart J 148:501–506

    Article  PubMed  Google Scholar 

  45. Dewey M, Zimmermann E, Laule M, Rutsch W, Hamm B (2008) Three-vessel coronary artery disease examined with 320-slice computed tomography coronary angiography. Eur Heart J 29(13):1669 Epub 2008 Feb 7

    Article  PubMed  Google Scholar 

  46. Rybicki FJ, Otero HJ, Steigner ML et al (2008) Initial evaluation of coronary images from 320-detector row computed tomography. Int J Cardiovasc Imaging 24:535–546

    Article  PubMed  Google Scholar 

  47. Flohr TG, McCollough CH, Bruder H et al (2006) First performance evaluation of a dual-source CT (DSCT) system. Eur Radiol 16:256–268

    Article  PubMed  Google Scholar 

  48. Achenbach S, Ropers D, Kuettner A et al (2006) Contrast-enhanced coronary artery visualization by dual-source computed tomography-initial experience. Eur J Radiol 57:331–335

    Article  PubMed  Google Scholar 

  49. Ropers U, Ropers D, Pflederer T et al (2007) Influence of heart rate on the diagnostic accuracy of dual-source computed tomography Coronary angiography. J Am Coll Cardiol 50:2393–2398

    Article  PubMed  Google Scholar 

  50. Kovacs A, Probst C, Sommer T et al (2005) CT Coronary angiography in patients with Atrial Fibrillation. Fortschr Röntgenstr 177:1655–1662

    Article  CAS  Google Scholar 

  51. Dewey M, Kovacs A (2006) CT Coronary Angiography in patients with Atrial Fibrillation. Fortschr Röntgenstr 178:721 author reply 721–722

    Google Scholar 

  52. Hoffmann MH, Shi H, Manzke R et al (2005) Noninvasive coronary angiography with 16-detector row CT: effect of heart rate. Radiology 234:86–97

    Article  PubMed  Google Scholar 

  53. Greuter MJ, Dorgelo J, Tukker WG, Oudkerk M (2005) Study on motion artifacts in coronary arteries with an anthropomorphic moving heart phantom on an ECG-gated multidetector computed tomography unit. Eur Radiol 15:995–1007

    Article  PubMed  Google Scholar 

  54. Greuter MJ, Flohr T, van Ooijen PM, Oudkerk M (2007) A model for temporal resolution of multidetector computed tomography of coronary arteries in relation to rotation time, heart rate and reconstruction algorithm. Eur Radiol 17(3):784–812 Epub 2006 Apr 27

    Article  PubMed  CAS  Google Scholar 

  55. Leschka S, Wildermuth S, Boehm T et al (2006) Noninvasive coronary angiography with 64-section CT: effect of average heart rate and heart rate variability on image quality. Radiology 241:378–385

    Article  PubMed  Google Scholar 

  56. Dewey M, Teige F, Laule M, Hamm B (2007) Influence of heart rate on diagnostic accuracy and image quality of 16-slice CT coronary angiography: comparison of multisegment and halfscan reconstruction approaches. Eur Radiol 17:2829–2837

    Article  PubMed  Google Scholar 

  57. Schuijf JD, Bax JJ, Jukema JW et al (2004) Feasibility of assessment of coronary stent patency using 16-slice computed tomography. Am J Cardiol 94:427–430

    Article  PubMed  Google Scholar 

  58. Gaspar T, Halon DA, Lewis BS et al (2005) Diagnosis of coronary in-stent restenosis with multidetector row spiral computed tomography. J Am Coll Cardiol 46:1573–1579

    Article  PubMed  Google Scholar 

  59. Gilard M, Cornily JC, Pennec PY et al (2006) Assessment of coronary artery stents by 16 slice computed tomography. Heart 92:58–61

    Article  PubMed  CAS  Google Scholar 

  60. Rixe J, Achenbach S, Ropers D et al (2006) Assessment of coronary artery stent restenosis by 64-slice multi-detector computed tomography. Eur Heart J 27:2567–2572

    Article  PubMed  Google Scholar 

  61. He S, Dai R, Chen Y, Bai H (2001) Optimal electrocardiographically triggered phase for reducing motion artifact at electron-beam CT in the coronary artery. Acad Radiol 8:48–56

    Article  PubMed  CAS  Google Scholar 

  62. Lu B, Mao SS, Zhuang N et al (2001) Coronary artery motion during the cardiac cycle and optimal ECG triggering for coronary artery imaging. Invest Radiol 36:250–256

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the Doris Duke Charitable Foundation (Julie Miller, Clinical Scientist Development Program).

Conflicts of interest

(Other authors: none reported)

Marc Dewey:

Research grants: Amersham Buchler (now: GE Healthcare Biosciences), Bracco-Altana, and Toshiba Medical Systems.

Speakers Bureau: Toshiba Medical Systems and Schering (now: Bayer).

Workshops: www.herz-kurs.de

Narinder Paul:

Research grants: Toshiba Medical Systems.

John Hoe:

Research grants: Toshiba Medical Systems.

Speakers Bureau: Toshiba Medical Systems and GE Healthcare Biosciences.

Workshops: regional training centre for cardiac CT for Toshiba users.

Pedro Lemos:

Consulting fee/Advisory Board: Scietch, Boston Scientific.

Honoraria for lectures: Boston Scientific, Biotronik, Cordis.

Albert Lardo:

Research grants: Toshiba Medical Systems, Medrad.

Speakers Bureau: Toshiba Medical Systems.

Consulting fee: Medrad.

Julie M. Miller:

Research grants: Dr. Miller was primarily funded by the Doris Duke Foundation during the entire study but is also funded in part by a grant from Toshiba Medical Systems and NHLBI.

Armin Arbab-Zadeh:

Speakers Bureau: Toshiba Medical Systems.

Narinder Paul:

Research grants: Toshiba Medical Systems.

Speakers Bureau: Toshiba Medical Systems.

Advisory Board: Vital Images, Inc.

David Bush:

Research grants: Toshiba Medical Systems.

Speakers Bureau: Toshiba Medical Systems, Bristol-Myers Squibb and Sanofi-Adventis.

João A. C. Lima:

Research grants: Principal Investigator of the grant from Toshiba Medical Systems that funded all Core64 activities based at the Johns Hopkins Hospital.

Speakers Bureau: Toshiba Medical Systems, Siemens Medical Systems, GE Medical Systems as well as Bracco Inc., Astellas Inc. and Abbott Laboratories.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Julie M. Miller or Marc Dewey.

Additional information

J.M. Miller and M. Dewey contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miller, J.M., Dewey, M., Vavere, A.L. et al. Coronary CT angiography using 64 detector rows: methods and design of the multi-centre trial CORE-64. Eur Radiol 19, 816–828 (2009). https://doi.org/10.1007/s00330-008-1203-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-008-1203-7

Keywords

Navigation