European Radiology

, Volume 19, Issue 3, pp 591–598 | Cite as

ACCURATUM: improved calcium volume scoring using a mesh-based algorithm—a phantom study

  • Stefan C. Saur
  • Hatem Alkadhi
  • Lotus Desbiolles
  • Gábor Székely
  • Philippe C. Cattin
Cardiac

Abstract

To overcome the limitations of the classical volume scoring method for quantifying coronary calcifications, including accuracy, variability between examinations, and dependency on plaque density and acquisition parameters, a mesh-based volume measurement method has been developed. It was evaluated and compared with the classical volume scoring method for accuracy, i.e., the normalized volume (measured volume/ground-truthed volume), and for variability between examinations (standard deviation of accuracy). A cardiac computed-tomography (CT) phantom containing various cylindrical calcifications was scanned using different tube voltages and reconstruction kernels, at various positions and orientations on the CT table and using different slice thicknesses. Mean accuracy for all plaques was significantly higher (p < 0.0001) for the proposed method (1.220 ± 0.507) than for the classical volume score (1.896 ± 1.095). In contrast to the classical volume score, plaque density (p = 0.84), reconstruction kernel (p = 0.19), and tube voltage (p = 0.27) had no impact on the accuracy of the developed method. In conclusion, the method presented herein is more accurate than classical calcium scoring and is less dependent on tube voltage, reconstruction kernel, and plaque density.

Keywords

Coronary calcium Volume Computed tomography 

Supplementary material

330_2008_1181_MOESM1_ESM.doc (44 kb)
Table 1The mean Agatston score (±standard deviation) and mean calcium mass (±standard deviation) were computed for each plaque within the various training and evaluation data sets. (DOC 43.5 KB)

References

  1. 1.
    Leber AW, Becker A, Knez A et al (2006) Accuracy of 64-slice computed tomography to classify and quantify plaque volumes in the proximal coronary system: a comparative study using intravascular ultrasound. J Am Coll Cardiol 47:672–677CrossRefPubMedGoogle Scholar
  2. 2.
    Blankenhorn DH, Stern D (1959) Calcification of the coronary arteries. Am J Roentgenol Radium Ther Nucl Med 81:772–777PubMedGoogle Scholar
  3. 3.
    Greenland P, LaBree L, Azen SP, Doherty TM, Detrano RC (2004) Coronary artery calcium score combined with Framingham score for risk prediction in asymptomatic individuals. JAMA 291:210–215CrossRefPubMedGoogle Scholar
  4. 4.
    Arad Y, Goodman KJ, Roth M, Newstein D, Guerci AD (2005) Coronary calcification, coronary disease risk factors, C-reactive protein, and atherosclerotic cardiovascular disease events: the St. Francis Heart Study. J Am Coll Cardiol 46:158–165CrossRefPubMedGoogle Scholar
  5. 5.
    Agatston AS, Janowitz WR, Hildner FJ, Zusmer NR, Viamonte M Jr, Detrano R (1990) Quantification of coronary artery calcium using ultrafast computed tomography. J Am Coll Cardiol 15:827–832PubMedCrossRefGoogle Scholar
  6. 6.
    Hong C, Bae KT, Pilgram TK (2003) Coronary artery calcium: accuracy and reproducibility of measurements with multi-detector row CT-assessment of effects of different thresholds and quantification methods. Radiology 227:795–801CrossRefPubMedGoogle Scholar
  7. 7.
    Kopp AF, Ohnesorge B, Becker C et al (2002) Reproducibility and accuracy of coronary calcium measurements with multi-detector row versus electron-beam CT. Radiology 225:113–119CrossRefPubMedGoogle Scholar
  8. 8.
    Ohnesorge B, Flohr T, Fischbach R et al (2002) Reproducibility of coronary calcium quantification in repeat examinations with retrospectively ECG-gated multisection spiral CT. Eur Radiol 12:1532–1540CrossRefPubMedGoogle Scholar
  9. 9.
    Yoon HC, Goldin JG, Greaser LE 3rd, Sayre J, Fonarow GC (2000) Interscan variation in coronary artery calcium quantification in a large asymptomatic patient population. AJR Am J Roentgenol 174:803–809PubMedGoogle Scholar
  10. 10.
    Lu B, Budoff MJ, Zhuang N et al (2002) Causes of interscan variability of coronary artery calcium measurements at electron-beam CT. Acad Radiol 9:654–661CrossRefPubMedGoogle Scholar
  11. 11.
    Halliburton SS, Stillman AE, Lieber M, Kasper JM, Kuzmiak SA, White RD (2005) Potential clinical impact of variability in the measurement of coronary artery calcification with sequential MDCT. AJR Am J Roentgenol 184:643–648PubMedGoogle Scholar
  12. 12.
    Hong C, Becker CR, Schoepf UJ, Ohnesorge B, Bruening R, Reiser MF (2002) Coronary artery calcium: absolute quantification in nonenhanced and contrast-enhanced multi-detector row CT studies. Radiology 223:474–480CrossRefPubMedGoogle Scholar
  13. 13.
    Yoon HC, Greaser LE 3rd, Mather R, Sinha S, McNitt-Gray MF, Goldin JG (1997) Coronary artery calcium: alternate methods for accurate and reproducible quantitation. Acad Radiol 4:666–673CrossRefPubMedGoogle Scholar
  14. 14.
    McCollough CH, Ulzheimer S, Halliburton SS, Shanneik K, White RD, Kalender WA (2007) Coronary artery calcium: a multi-institutional, multimanufacturer international standard for quantification at cardiac CT. Radiology 243:527–538CrossRefPubMedGoogle Scholar
  15. 15.
    Callister TQ, Cooil B, Raya SP, Lippolis NJ, Russo DJ, Raggi P (1998) Coronary artery disease: improved reproducibility of calcium scoring with an electron-beam CT volumetric method. Radiology 208:807–814PubMedGoogle Scholar
  16. 16.
    Halliburton SS, Stillman AE, White RD (2002) Noninvasive quantification of coronary artery calcification: methods and prognostic value. Cleve Clin J Med 69(Suppl 3):S6–S11CrossRefPubMedGoogle Scholar
  17. 17.
    Van Hoe LR, De Meerleer KG, Leyman PP, Vanhoenacker PK (2003) Coronary artery calcium scoring using ECG-gated multidetector CT: effect of individually optimized image-reconstruction windows on image quality and measurement reproducibility. AJR Am J Roentgenol 181:1093–1100PubMedGoogle Scholar
  18. 18.
    Takahashi N, Bae KT (2003) Quantification of coronary artery calcium with multi-detector row CT: assessing interscan variability with different tube currents pilot study. Radiology 228:101–106CrossRefPubMedGoogle Scholar
  19. 19.
    Ulzheimer S, Kalender WA (2003) Assessment of calcium scoring performance in cardiac computed tomography. Eur Radiol 13:484–497PubMedGoogle Scholar
  20. 20.
    Muhlenbruch G, Thomas C, Wildberger JE et al (2005) Effect of varying slice thickness on coronary calcium scoring with multislice computed tomography in vitro and in vivo. Invest Radiol 40:695–699CrossRefPubMedGoogle Scholar
  21. 21.
    Flohr TG, McCollough CH, Bruder H et al (2006) First performance evaluation of a dual-source CT (DSCT) system. Eur Radiol 16:256–268CrossRefPubMedGoogle Scholar
  22. 22.
    Boone JM (2001) Determination of the presampled MTF in computed tomography. Med Phys 28:356–360CrossRefPubMedGoogle Scholar
  23. 23.
    Birnbaum BA, Hindman N, Lee J, Babb JS (2007) Multi-detector row CT attenuation measurements: assessment of intra- and interscanner variability with an anthropomorphic body CT phantom. Radiology 242:109–119CrossRefPubMedGoogle Scholar
  24. 24.
    Cademartiri F, La Grutta L, Runza G et al (2007) Influence of convolution filtering on coronary plaque attenuation values: observations in an ex vivo model of multislice computed tomography coronary angiography. Eur Radiol 17:1842–1849CrossRefPubMedGoogle Scholar
  25. 25.
    Thomas CK, Muhlenbruch G, Wildberger JE et al (2006) Coronary artery calcium scoring with multislice computed tomography: in vitro assessment of a low tube voltage protocol. Invest Radiol 41:668–673CrossRefPubMedGoogle Scholar
  26. 26.
    Berger MJ, Hubell JH (1987) XCOM: Photon cross sections on a personal computer. National Bureau of Standards, Washington, DC (USA). Center for Radiation Research 01:1–30Google Scholar
  27. 27.
    Muhlenbruch G, Klotz E, Wildberger JE et al (2007) The accuracy of 1- and 3-mm slices in coronary calcium scoring using multi-slice CT in vitro and in vivo. Eur Radiol 17:321–329CrossRefPubMedGoogle Scholar
  28. 28.
    Dehmeshki J, Ye X, Amin H, Abaei M, Lin X, Qanadli SD (2007) Volumetric quantification of atherosclerotic plaque in CT considering partial volume effect. IEEE Trans Med Imaging 26:273–282CrossRefPubMedGoogle Scholar
  29. 29.
    Rollano-Hijarrubia E, Stokking R, van der Meer F, Niessen WJ (2006) Imaging of small high-density structures in CT. A phantom study. Acad Radiol 13:893–908CrossRefPubMedGoogle Scholar
  30. 30.
    Rollano-Hijarrubia E, Stokking R, Niessen WJ (2006) Accuracy comparison of a 16 and 64 multidetector-row computed tomography scanner to image small high-density structures. Invest Radiol 41:781–792CrossRefPubMedGoogle Scholar
  31. 31.
    Reimann AJ, Rinck D, Birinci-Aydogan A et al (2007) Dual-source computed tomography: advances of improved temporal resolution in coronary plaque imaging. Invest Radiol 42:196–203CrossRefPubMedGoogle Scholar

Copyright information

© European Society of Radiology 2008

Authors and Affiliations

  • Stefan C. Saur
    • 1
  • Hatem Alkadhi
    • 2
    • 4
  • Lotus Desbiolles
    • 2
  • Gábor Székely
    • 1
  • Philippe C. Cattin
    • 1
    • 3
  1. 1.Computer Vision Laboratory, ETH ZurichZurichSwitzerland
  2. 2.Institute of Diagnostic RadiologyUniversity Hospital ZurichZurichSwitzerland
  3. 3.CMBEUniversity of BaselBaselSwitzerland
  4. 4.Department of Medical Radiology, Institute of Diagnostic RadiologyUniversity Hospital ZurichZurichSwitzerland

Personalised recommendations