Skip to main content
Log in

CT of the musculoskeletal system: What is left is the days of MRI?

  • Musculoskeletal
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Magnetic resonance imaging (MRI) plays a central role in the modern imaging of musculoskeletal disorders, due to its ability to produce multiplanar images and characterise soft tissues accurately. However, computed tomography (CT) still has an important role to play, not merely as an alternative to MRI, but as being the preferred imaging investigation in some situations. This article briefly reviews the history of CT technology, the technical factors involved and a number of current applications, as well as looking at future areas where CT may be employed. The advent of ever-increasing numbers of rows of detectors has opened up more possible uses for CT technology. However, diagnostic images may be obtained from CT systems with four rows of detectors or more, and their ability to produce near isotropic voxels and therefore multiplanar reformats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Rydberg J, Buckwalter KA, Caldemeyer KS et al (2000) Multisection CT: scanning techniques and clinical applications. Radiographics 20:1787–1806

    PubMed  CAS  Google Scholar 

  2. Buckwalter KA, Rydberg J, Kopecky KK, Crow K, Yang EL (2001) Musculoskeletal imaging with multislice CT. AJR Am J Roentgenol 176:979–986

    PubMed  CAS  Google Scholar 

  3. Taguchi K, Aradate H (1998) Algorithm for image reconstruction in multi-slice helical CT. Med Phys 25:550–561

    Article  PubMed  CAS  Google Scholar 

  4. Watura R, Cobby M, Taylor J (2004) Multislice CT in imaging of trauma of the spine, pelvis and complex foot injuries. Br J Radiol 77(Spec No 1):S46–S63

    Article  PubMed  Google Scholar 

  5. Crim JR, Moore K, Brodke D (2001) Clearance of the cervical spine in multitrauma patients: the role of advanced imaging. Semin Ultrasound CT MR 22:283–305

    Article  PubMed  CAS  Google Scholar 

  6. Wintermark M, Mouhsine E, Theumann N et al (2003) Thoracolumbar spine fractures in patients who have sustained severe trauma: depiction with multi-detector row CT. Radiology 227:681–689

    Article  PubMed  Google Scholar 

  7. Guillamondegui OD, Pryor JP, Gracias VH, Gupta R, Reilly PM, Schwab CW (2002) Pelvic radiography in blunt trauma resuscitation: a diminishing role. J Trauma 53:1043–1047

    Article  PubMed  Google Scholar 

  8. Wedegartner U, Gatzka C, Rueger JM, Adam G (2003) [Multislice CT (MSCT) in the detection and classification of pelvic and acetabular fractures]. Rofo 175:105–111

    PubMed  CAS  Google Scholar 

  9. Kozin SH (2001) Incidence, mechanism, and natural history of scaphoid fractures. Hand Clin 17:515–524

    PubMed  CAS  Google Scholar 

  10. Groves AM, Kayani I, Syed R et al (2006) An international survey of hospital practice in the imaging of acute scaphoid trauma. AJR Am J Roentgenol 187:1453–1456

    Article  PubMed  Google Scholar 

  11. Newberg A, Dalinka MK, Alazraki N et al (2000) Acute hand and wrist trauma. American College of Radiology. ACR Appropriateness Criteria. Radiology 215(Suppl):375–378

    PubMed  Google Scholar 

  12. Radiologists RCo (2007) Making the best use of clinical radiology services. Referral Guidelines. 6th edition

  13. Weber ER (1980) Biomechanical implications of scaphoid waist fractures. Clin Orthop Relat Res 83–89

  14. Singh HP, Forward D, Davis TR, Dawson JS, Oni JA, Downing ND (2005) Partial union of acute scaphoid fractures. J Hand Surg [Br] 30:440–445

    CAS  Google Scholar 

  15. Bain GI, Bennett JD, MacDermid JC, Slethaug GP, Richards RS, Roth JH (1998) Measurement of the scaphoid humpback deformity using longitudinal computed tomography: intra- and interobserver variability using various measurement techniques. J Hand Surg [Am] 23:76–81

    Article  CAS  Google Scholar 

  16. Wicky S, Blaser PF, Blanc CH, Leyvraz PF, Schnyder P, Meuli RA (2000) Comparison between standard radiography and spiral CT with 3D reconstruction in the evaluation, classification and management of tibial plateau fractures. Eur Radiol 10:1227–1232

    Article  PubMed  CAS  Google Scholar 

  17. Mui LW, Engelsohn E, Umans H (2007) Comparison of CT and MRI in patients with tibial plateau fracture: can CT findings predict ligament tear or meniscal injury? Skeletal Radiol 36:145–151

    Article  PubMed  Google Scholar 

  18. Daftary A, Haims AH, Baumgaertner MR (2005) Fractures of the calcaneus: a review with emphasis on CT. Radiographics 25:1215–1226

    Article  PubMed  Google Scholar 

  19. Paley D, Hall H (1989) Calcaneal fracture controversies Can we put Humpty Dumpty together again? Orthop Clin North Am 20:665–677

    PubMed  CAS  Google Scholar 

  20. Mac Nealy GA, Rogers LF, Hernandez R, Poznanski AK (1982) Injuries of the distal tibial epiphysis: systematic radiographic evaluation. AJR Am J Roentgenol 138:683–689

    Google Scholar 

  21. Brown SD, Kasser JR, Zurakowski D, Jaramillo D (2004) Analysis of 51 tibial triplane fractures using CT with multiplanar reconstruction. AJR Am J Roentgenol 183:1489–1495

    PubMed  Google Scholar 

  22. Cahir JG, Toms AP, Marshall TJ, Wimhurst J, Nolan J (2007) CT and MRI of hip arthroplasty. Clin Radiol 62:1163–1171, discussion 1172–1173

    Article  PubMed  CAS  Google Scholar 

  23. White LM, Buckwalter KA (2002) Technical considerations: CT and MR imaging in the postoperative orthopedic patient. Semin Musculoskelet Radiol 6:5–17

    Article  PubMed  Google Scholar 

  24. White LM, Kim JK, Mehta M et al (2000) Complications of total hip arthroplasty: MR imaging-initial experience. Radiology 215:254–262

    PubMed  CAS  Google Scholar 

  25. Haramati N, Staron RB, Mazel-Sperling K et al (1994) CT scans through metal scanning technique versus hardware composition. Comput Med Imaging Graph 18:429–434

    Article  PubMed  CAS  Google Scholar 

  26. Robertson DD, Weiss PJ, Fishman EK, Magid D, Walker PS (1988) Evaluation of CT techniques for reducing artifacts in the presence of metallic orthopedic implants. J Comput Assist Tomogr 12:236–241

    Article  PubMed  CAS  Google Scholar 

  27. Toms AP, White LM, Marshall TJ, Donell ST (2005) Imaging the post-operative meniscus. Eur J Radiol 54:189–198

    Article  PubMed  Google Scholar 

  28. Mutschler C, Vande Berg BC, Lecouvet FE et al (2003) Postoperative meniscus: assessment at dual-detector row spiral CT arthrography of the knee. Radiology 228:635–641

    Article  PubMed  Google Scholar 

  29. Moser T, Dosch JC, Moussaoui A, Dietemann JL (2007) Wrist ligament tears: evaluation of MRI and combined MDCT and MR arthrography. AJR Am J Roentgenol 188:1278–1286

    Article  PubMed  Google Scholar 

  30. Schmid MR, Schertler T, Pfirrmann CW et al (2005) Interosseous ligament tears of the wrist: comparison of multi-detector row CT arthrography and MR imaging. Radiology 237:1008–1013

    Article  PubMed  Google Scholar 

  31. Aliprandi A, Fausto A, Quarenghi M, Modestino S, Randelli P, Sardanelli F (2006) One-shot CT and MR arthrography of the shoulder with a mixture of iodinated and paramagnetic contrast agents using arthroscopy as a gold standard. Radiol Med (Torino) 111:53–60

    Article  CAS  Google Scholar 

  32. Waldt S, Metz S, Burkart A et al (2006) Variants of the superior labrum and labro-bicipital complex: a comparative study of shoulder specimens using MR arthrography, multi-slice CT arthrography and anatomical dissection. Eur Radiol 16:451–458

    Article  PubMed  Google Scholar 

  33. Roger B, Skaf A, Hooper AW, Lektrakul N, Yeh L, Resnick D (1999) Imaging findings in the dominant shoulder of throwing athletes: comparison of radiography, arthrography, CT arthrography, and MR arthrography with arthroscopic correlation. AJR Am J Roentgenol 172:1371–1380

    PubMed  CAS  Google Scholar 

  34. Schmid MR, Pfirrmann CW, Hodler J, Vienne P, Zanetti M (2003) Cartilage lesions in the ankle joint: comparison of MR arthrography and CT arthrography. Skeletal Radiol 32:259–265

    PubMed  CAS  Google Scholar 

  35. El-Khoury GY, Alliman KJ, Lundberg HJ, Rudert MJ, Brown TD, Saltzman CL (2004) Cartilage thickness in cadaveric ankles: measurement with double-contrast multi-detector row CT arthrography versus MR imaging. Radiology 233:768–773

    Article  PubMed  Google Scholar 

  36. Waldt S, Bruegel M, Ganter K et al (2005) Comparison of multislice CT arthrography and MR arthrography for the detection of articular cartilage lesions of the elbow. Eur Radiol 15:784–791

    Article  PubMed  CAS  Google Scholar 

  37. Mitchell MJ, Bielecki D, Bergman AG, Kursunoglu-Brahme S, Sartoris DJ, Resnick D (1995) Localization of specific joint causing hindfoot pain: value of injecting local anesthetics into individual joints during arthrography. AJR Am J Roentgenol 164:1473–1476

    PubMed  CAS  Google Scholar 

  38. Saifuddin A, Abdus-Samee M, Mann C, Singh D, Angel JC (2005) CT guided diagnostic foot injections. Clin Radiol 60:191–195

    Article  PubMed  CAS  Google Scholar 

  39. Ruhoy MK, Newberg AH, Yodlowski ML, Mizel MS, Trepman E (1998) Subtalar Joint Arthrography. Semin Musculoskelet Radiol 2:433–438

    Article  PubMed  Google Scholar 

  40. Wagner AL, Murtagh FR (2002) Selective nerve root blocks. Tech Vasc Interv Radiol 5:194–200

    Article  PubMed  Google Scholar 

  41. Rosenthal DI, Hornicek FJ, Wolfe MW, Jennings LC, Gebhardt MC, Mankin HJ (1998) Percutaneous radiofrequency coagulation of osteoid osteoma compared with operative treatment. J Bone Jt Surg Am 80:815–821

    CAS  Google Scholar 

  42. Woertler K, Vestring T, Boettner F, Winkelmann W, Heindel W, Lindner N (2001) Osteoid osteoma: CT-guided percutaneous radiofrequency ablation and follow-up in 47 patients. J Vasc Interv Radiol 12:717–722

    Article  PubMed  CAS  Google Scholar 

  43. Chiou YY, Rosenthal DI, Rosenberg AE (2003) “Beaded” osteoid osteoma: a possible transition between solitary and multicentric tumor. Skelet Radiol 32:412–415

    Article  Google Scholar 

  44. Davies M, Cassar-Pullicino VN, Davies AM, McCall IW, Tyrrell PN (2002) The diagnostic accuracy of MR imaging in osteoid osteoma. Skelet Radiol 31:559–569

    Article  Google Scholar 

  45. Pikoulas C, Mantzikopoulos G, Thanos L, Passomenos D, Dalamarinis C, Glampedaki-Dagianta K (1995) Unusually located osteoid osteomas. Eur J Radiol 20:120–125

    Article  PubMed  CAS  Google Scholar 

  46. Woods ER, Martel W, Mandell SH, Crabbe JP (1993) Reactive soft-tissue mass associated with osteoid osteoma: correlation of MR imaging features with pathologic findings. Radiology 186:221–225

    PubMed  CAS  Google Scholar 

  47. Stacy GS, Dixon LB (2007) Pitfalls in MR image interpretation prompting referrals to an orthopedic oncology clinic. Radiographics 27:805–826, discussion 827–828

    Article  PubMed  Google Scholar 

  48. Fayad LM, Kamel IR, Kawamoto S, Bluemke DA, Frassica FJ, Fishman EK (2005) Distinguishing stress fractures from pathologic fractures: a multimodality approach. Skelet Radiol 34:245–259

    Article  Google Scholar 

  49. Daffner RH, Pavlov H (1992) Stress fractures: current concepts. AJR Am J Roentgenol 159:245–252

    PubMed  CAS  Google Scholar 

  50. Brahme SK, Cervilla V, Vint V, Cooper K, Kortman K, Resnick D (1990) Magnetic resonance appearance of sacral insufficiency fractures. Skelet Radiol 19:489–493

    Article  CAS  Google Scholar 

  51. Mori T, Fujii M, Akisue T, Yamamoto T, Kurosaka M, Sugimura K (2005) Three-dimensional images of contrast-enhanced MDCT for preoperative assessment of musculoskeletal masses: comparison with MRI and plain radiographs. Radiat Med 23:398–406

    PubMed  Google Scholar 

  52. Murphey MD, Carroll JF, Flemming DJ, Pope TL, Gannon FH, Kransdorf MJ (2004) From the archives of the AFIP: benign musculoskeletal lipomatous lesions. Radiographics 24:1433–1466

    Article  PubMed  Google Scholar 

  53. Newman JS, Newberg AH (2000) Congenital tarsal coalition: multimodality evaluation with emphasis on CT and MR imaging. Radiographics 20:321–332, quiz 526–527, 532

    PubMed  CAS  Google Scholar 

  54. Herzenberg JE, Goldner JL, Martinez S, Silverman PM (1986) Computerized tomography of talocalcaneal tarsal coalition: a clinical and anatomic study. Foot Ankle 6:273–288

    PubMed  CAS  Google Scholar 

  55. Wechsler RJ, Schweitzer ME, Deely DM, Horn BD, Pizzutillo PD (1994) Tarsal coalition: depiction and characterization with CT and MR imaging. Radiology 193:447–452

    PubMed  CAS  Google Scholar 

  56. Emery KH, Bisset GS 3rd, Johnson ND, Nunan PJ (1998) Tarsal coalition: a blinded comparison of MRI and CT. Pediatr Radiol 28:612–616

    Article  PubMed  CAS  Google Scholar 

  57. Elias DA, White LM (2004) Imaging of patellofemoral disorders. Clin Radiol 59:543–557

    Article  PubMed  CAS  Google Scholar 

  58. McNally EG (2001) Imaging assessment of anterior knee pain and patellar maltracking. Skelet Radiol 30:484–495

    Article  CAS  Google Scholar 

  59. Guglielmi G, Lang TF (2002) Quantitative computed tomography. Semin Musculoskelet Radiol 6:219–227

    Article  PubMed  Google Scholar 

  60. Wachter NJ, Krischak GD, Mentzel M et al (2002) Correlation of bone mineral density with strength and microstructural parameters of cortical bone in vitro. Bone 31:90–95

    Article  PubMed  CAS  Google Scholar 

  61. Dohn UM, Ejbjerg BJ, Court-Payen M et al (2006) Are bone erosions detected by magnetic resonance imaging and ultrasonography true erosions? A comparison with computed tomography in rheumatoid arthritis metacarpophalangeal joints. Arthritis Res Ther 8:R110

    Article  PubMed  Google Scholar 

  62. Perry D, Stewart N, Benton N et al (2005) Detection of erosions in the rheumatoid hand; a comparative study of multidetector computerized tomography versus magnetic resonance scanning. J Rheumatol 32:256–267

    PubMed  Google Scholar 

  63. Goldbach-Mansky R, Woodburn J, Yao L, Lipsky PE (2003) Magnetic resonance imaging in the evaluation of bone damage in rheumatoid arthritis: a more precise image or just a more expensive one? Arthritis Rheum 48:585–589

    Article  PubMed  Google Scholar 

  64. Ohashi K, El-Khoury GY, Bennett DL (2004) MDCT of tendon abnormalities using volume-rendered images. AJR Am J Roentgenol 182:161–165

    PubMed  CAS  Google Scholar 

  65. Sunagawa T, Ishida O, Ishiburo M, Suzuki O, Yasunaga Y, Ochi M (2005) Three-dimensional computed tomography imaging: its applicability in the evaluation of extensor tendons in the hand and wrist. J Comput Assist Tomogr 29:94–98

    Article  PubMed  Google Scholar 

  66. Ohashi K, Restrepo JM, El-Khoury GY, Berbaum KS (2007) Peroneal tendon subluxation and dislocation: detection on volume-rendered images–initial experience. Radiology 242:252–257

    Article  PubMed  Google Scholar 

  67. Kubo T, Lin PJ, Stiller W et al (2008) Radiation dose reduction in chest CT: a review. AJR Am J Roentgenol 190:335–343

    Article  PubMed  Google Scholar 

  68. Bonel HM, Jager L, Frei KA et al (2005) Optimization of MDCT of the wrist to achieve diagnostic image quality with minimum radiation exposure. AJR Am J Roentgenol 185:647–654

    PubMed  Google Scholar 

  69. Gurung J, Khan MF, Maataoui A et al (2005) Multislice CT of the pelvis: dose reduction with regard to image quality using 16-row CT. Eur Radiol 15:1898–1905

    Article  PubMed  Google Scholar 

  70. Cantwell CP, Kenny P, Eustace S (2008) Low radiation dose CT technique for guidance of radiofrequency ablation of osteoid osteoma. Clin Radiol 63:449–452

    PubMed  CAS  Google Scholar 

  71. Ptak T, Rhea JT, Novelline RA (2003) Radiation dose is reduced with a single-pass whole-body multi-detector row CT trauma protocol compared with a conventional segmented method: initial experience. Radiology 229:902–905

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. T. H. West.

Rights and permissions

Reprints and permissions

About this article

Cite this article

West, A.T.H., Marshall, T.J. & Bearcroft, P.W. CT of the musculoskeletal system: What is left is the days of MRI?. Eur Radiol 19, 152–164 (2009). https://doi.org/10.1007/s00330-008-1129-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-008-1129-0

Keywords

Navigation