European Radiology

, 19:13 | Cite as

Dual energy CT: preliminary observations and potential clinical applications in the abdomen

  • Anno Graser
  • Thorsten R. C. Johnson
  • Hersh Chandarana
  • Michael Macari
Computer Tomography

Abstract

Dual energy CT (DECT) is a new technique that allows differentiation of materials and tissues based on CT density values derived from two synchronous CT acquisitions at different tube potentials. With the introduction of a new dual source CT system, this technique can now be used routinely in abdominal imaging. Potential clinical applications include evaluation of renal masses, liver lesions, urinary calculi, small bowel, pancreas, and adrenal glands. In CT angiography of abdominal aortic aneurysms, dual energy CT techniques can be used to remove bones from the datasets, and virtual unenhanced images allow differentiation of contrast agent from calcifying thrombus in patients with endovascular stents. This review describes potential applications, practical guidelines, and limitations of dual energy CT in the abdomen.

Keywords

Computed tomography Abdominal imaging Dual energy CT 

References

  1. 1.
    Hounsfield GN (1995) Computerized transverse axial scanning (tomography): Part I. Description of system, 1973. Br J Radiol 68:H166–H172PubMedGoogle Scholar
  2. 2.
    Flohr TG, McCollough CH, Bruder H et al (2006) First performance evaluation of a dual-source CT (DSCT) system. Eur Radiol 16:256–268PubMedCrossRefGoogle Scholar
  3. 3.
    Johnson TR, Krauss B, Sedlmair M et al (2007) Material differentiation by dual energy CT: initial experience. Eur Radiol 17:1510–1517PubMedCrossRefGoogle Scholar
  4. 4.
    Kalva SP, Sahani DV, Hahn PF et al (2006) Using the K-edge to improve contrast conspicuity and to lower radiation dose with a 16-MDCT: a phantom and human study. J Comput Assist Tomogr 30:391–397PubMedCrossRefGoogle Scholar
  5. 5.
    Genant HK, Boyd D (1977) Quantitative bone mineral analysis using dual energy computed tomography. Invest Radiol 12:545–551PubMedCrossRefGoogle Scholar
  6. 6.
    Goldberg HI, Cann CE, Moss AA et al (1982) Noninvasive quantitation of liver iron in dogs with hemochromatosis using dual-energy CT scanning. Invest Radiol 17:375–380PubMedCrossRefGoogle Scholar
  7. 7.
    Cann CE, Gamsu G, Birnberg FA et al (1982) Quantification of calcium in solitary pulmonary nodules using single- and dual-energy CT. Radiology 145:493–496PubMedGoogle Scholar
  8. 8.
    Chiro GD, Brooks RA, Kessler RM et al (1979) Tissue signatures with dual-energy computed tomography. Radiology 131:521–523PubMedGoogle Scholar
  9. 9.
    Johnson TR, Nikolaou K, Wintersperger BJ et al (2006) Dual-source CT cardiac imaging: initial experience. Eur Radiol 16:1409–1415PubMedCrossRefGoogle Scholar
  10. 10.
    Graser A, Wintersperger BJ, Suess C et al (2006) Dose reduction and image quality in MDCT colonography using tube current modulation. AJR Am.J.Roentgenol 187:695–701PubMedCrossRefGoogle Scholar
  11. 11.
    Graser A, Johnson TR, Bader M et al (2008) Dual energy CT characterization of urinary calculi: Initial in vitro and clinical experience. Invest Radiol 43:112–119PubMedCrossRefGoogle Scholar
  12. 12.
    Szolar DH, Kammerhuber F, Altziebler S et al (1997) Multiphasic helical CT of the kidney: increased conspicuity for detection and characterization of small (<3-cm) renal masses. Radiology 202:211–217PubMedGoogle Scholar
  13. 13.
    Birnbaum BA, Jacobs JE, Ramchandani P (1996) Multiphasic renal CT: comparison of renal mass enhancement during the corticomedullary and nephrographic phases. Radiology 200:753–758PubMedGoogle Scholar
  14. 14.
    Israel GM, Bosniak MA (2005) How I do it: Evaluating renal masses. Radiology 236:441–450PubMedCrossRefGoogle Scholar
  15. 15.
    Graser A (2007) Dual energy CT in the assessment of renal masses: Can dual energy virtually unenhanced images replace noncontrast scanning? RSNA 2007 Chicago, IL, USAGoogle Scholar
  16. 16.
    Boulay I, Holtz P, Foley WD et al (1999) Ureteral calculi: diagnostic efficacy of helical CT and implications for treatment of patients. AJR Am J Roentgenol 172:1485–1490PubMedGoogle Scholar
  17. 17.
    Smith RC, Rosenfield AT, Choe KA et al (1995) Acute flank pain: comparison of non-contrast-enhanced CT and intravenous urography. Radiology 194:789–794PubMedGoogle Scholar
  18. 18.
    Poletti PA, Platon A, Rutschmann OT et al (2007) Low-dose versus standard-dose CT protocol in patients with clinically suspected renal colic. AJR Am J Roentgenol 188:927–933PubMedCrossRefGoogle Scholar
  19. 19.
    Kluner C, Hein PA, Gralla O et al (2006) Does ultra-low-dose CT with a radiation dose equivalent to that of KUB suffice to detect renal and ureteral calculi? J Comput Assist Tomogr 30:44–50PubMedCrossRefGoogle Scholar
  20. 20.
    Park S (2007) Medical management of urinary stone disease. Expert Opin Pharmacother 8:1117–1125PubMedCrossRefGoogle Scholar
  21. 21.
    Moe OW (2006) Kidney stones: pathophysiology and medical management. Lancet 367:333–344PubMedCrossRefGoogle Scholar
  22. 22.
    Hillman BJ, Drach GW, Tracey P et al (1984) Computed tomographic analysis of renal calculi. AJR Am J Roentgenol 142:549–552PubMedGoogle Scholar
  23. 23.
    Mostafavi MR, Ernst RD, Saltzman B (1998) Accurate determination of chemical composition of urinary calculi by spiral computerized tomography. J Urol 159:673–675PubMedCrossRefGoogle Scholar
  24. 24.
    Nakada SY, Hoff DG, Attai S et al (2000) Determination of stone composition by noncontrast spiral computed tomography in the clinical setting. Urology 55:816–819PubMedCrossRefGoogle Scholar
  25. 25.
    Alkadhi H and al. e (2007) Dual-energy contrast-enhanced computed tomography for the detection of urinary stone disease. Invest Radiol 42:Google Scholar
  26. 26.
    Van Der Molen AJ, Cowan NC, Mueller-Lisse UG et al (2008) CT urography: definition, indications and techniques. A guideline for clinical practice Split-bolus MDCT urography with synchronous nephrographic and excretory phase enhancement. Eur Radiol Eur Radiol 18:4–17 Epub 2007 Nov 1CrossRefGoogle Scholar
  27. 27.
    Chow LC, Kwan SW, Olcott EW et al (2007) Split-bolus MDCT urography with synchronous nephrographic and excretory phase enhancement. AJR Am J Roentgenol AJR Am J Roentgenol 189:314–322Google Scholar
  28. 28.
    Mita T, Arita T, Matsunaga N et al (2000) Complications of endovascular repair for thoracic and abdominal aortic aneurysm: an imaging spectrum. Radiographics 20:1263–1278PubMedGoogle Scholar
  29. 29.
    Rozenblit AM, Patlas M, Rosenbaum AT et al (2003) Detection of endoleaks after endovascular repair of abdominal aortic aneurysm: value of unenhanced and delayed helical CT acquisitions. Radiology 227:426–433PubMedCrossRefGoogle Scholar
  30. 30.
    Macari M, Chandarana H, Schmidt B et al (2006) Abdominal aortic aneurysm: can the arterial phase at CT evaluation after endovascular repair be eliminated to reduce radiation dose? Radiology 241:908–914PubMedCrossRefGoogle Scholar
  31. 31.
    Korobkin M, Francis IR, Kloos RT et al (1996) The incidental adrenal mass. Radiol.Clin North Am 34:1037–1054PubMedGoogle Scholar
  32. 32.
    Israel GM, Korobkin M, Wang C et al (2004) Comparison of unenhanced CT and chemical shift MRI in evaluating lipid-rich adrenal adenomas. AJR Am J Roentgenol 183:215–219PubMedGoogle Scholar
  33. 33.
    Prokesch RW, Chow LC, Beaulieu CF et al (2002) Isoattenuating pancreatic adenocarcinoma at multi-detector row CT: secondary signs. Radiology 224:764–768PubMedCrossRefGoogle Scholar
  34. 34.
    Prokesch RW, Chow LC, Beaulieu CF et al (2002) Local staging of pancreatic carcinoma with multi-detector row CT: use of curved planar reformations initial experience. Radiology 225:759–765PubMedCrossRefGoogle Scholar
  35. 35.
    Gangi S, Fletcher JG, Nathan MA et al (2004) Time interval between abnormalities seen on CT and the clinical diagnosis of pancreatic cancer: retrospective review of CT scans obtained before diagnosis. AJR Am J Roentgenol 182:897–903PubMedGoogle Scholar
  36. 36.
    Semelka RC, Martin DR, Balci C et al (2001) Focal liver lesions: comparison of dual-phase CT and multisequence multiplanar MR imaging including dynamic gadolinium enhancement. J Magn Reson Imaging 13:397–401PubMedCrossRefGoogle Scholar
  37. 37.
    Kamel IR, Choti MA, Horton KM et al (2003) Surgically staged focal liver lesions: accuracy and reproducibility of dual-phase helical CT for detection and characterization Focal liver lesions: comparison of dual-phase CT and multisequence multiplanar MR imaging including dynamic gadolinium enhancement. Radiology 227:752–757PubMedCrossRefGoogle Scholar
  38. 38.
    Schima W, Ba-Ssalamah A, Kurtaran A et al (2007) Post-treatment imaging of liver tumours. Cancer Imaging 7(Spec No A):S28–S36PubMedCrossRefGoogle Scholar
  39. 39.
    Macari M, Megibow AJ, Balthazar EJ (2007) A pattern approach to the abnormal small bowel: observations at MDCT and CT enterography. AJR Am J Roentgenol 188:1344–1355PubMedCrossRefGoogle Scholar
  40. 40.
    Megibow AJ, Babb JS, Hecht EM et al (2006) Evaluation of bowel distention and bowel wall appearance by using neutral oral contrast agent for multi-detector row CT. Radiology 238:87–95PubMedCrossRefGoogle Scholar
  41. 41.
    Bodily KD, Fletcher JG, Solem CA et al (2006) Crohn Disease: mural attenuation and thickness at contrast-enhanced CT Enterography–correlation with endoscopic and histologic findings of inflammation. Radiology 238:505–516PubMedCrossRefGoogle Scholar

Copyright information

© European Society of Radiology 2008

Authors and Affiliations

  • Anno Graser
    • 1
    • 2
    • 3
  • Thorsten R. C. Johnson
    • 1
  • Hersh Chandarana
    • 2
  • Michael Macari
    • 2
  1. 1.Department of Clinical RadiologyUniversity of Munich – Grosshadern CampusMunichGermany
  2. 2.Department of RadiologyNew York University Medical CenterNew YorkUSA
  3. 3.Department of Clinical RadiologyUniversity of Munich – Grosshadern HospitalsMunichGermany

Personalised recommendations