Functional CT of squamous cell carcinoma in the head and neck: repeatability of tumor and muscle quantitative measurements, inter- and intra-observer agreement

Abstract

Our purpose was to determine the repeatability of squamous cell cancer in head and neck (SCCHN) and muscle tissue vascularity measurements as well as the inter- and intra-observer agreement using dynamic contrast-enhanced (DCE) multi-detector CT (MDCT). Twelve patients with histologically proven SCCHN were twice examined within 46 h. Measurement error and repeatability were assessed for each of the four functional parameters using the Bland-Altman plots. Two independent observers recorded the vascularity values of the tumor tissue; inter- and intra-observer agreement was assessed using the Bland-Altman plot analysis and intraclass correlation coefficients. For the tumor, the mean difference (95% limits of agreement) was 0.40 ml/min/100 g tissue (−6.80, 9.60); 0.01 (−0.96, 0.97) ml/100 g tissue; 0.20 (−1.80, 2.30) s; and 0.40 (−2.00, 2.80) ml/min/100 g tissue for BF, BV, MTT, and PS, respectively. For the muscle, the mean difference (95% limits of agreement) was −0.18 (−1.70, 1.35), 0.04 (−1.17, 1.35), −0.10 (−5.80, 5.60), and −0.10 (−2.20, 2.00), respectively. Measurement changes of at least ±8%, 30%, 36%, and 13% were found to be significant for BF, BV, MTT, and PS, respectively. There was better intra- than inter-observer agreement.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

References

  1. 1.

    Bisdas S, Baghi M, Smolarz A et al (2007) Quantitative measurements of perfusion and permeability of oropharyngeal and oral cavity cancer, recurrent disease, and associated lymph nodes using first-pass contrast-enhanced computed tomography studies. Invest Radiol 42:172–179

    PubMed  Article  Google Scholar 

  2. 2.

    Gandhi D, Hoeffner EG, Carlos RC et al (2003) Computed tomography perfusion of squamous cell carcinoma of the upper aerodigestive tract. Initial results. J Comput Assist Tomogr 27:687–693

    Article  Google Scholar 

  3. 3.

    Rumboldt Z, Al-Okaili R, Deveikis JP (2005) Perfusion CT for head and neck tumors: pilot study. AJNR Am J Neuroradiol 26:1178–1185

    PubMed  Google Scholar 

  4. 4.

    Zima A, Carlos R, Gandhi D et al (2007) Can pretreatment CT perfusion predict response of advanced squamous cell carcinoma of the upper aerodigestive tract treated with induction chemotherapy? AJNR Am J Neuroradiol 28:328–334

    PubMed  CAS  Google Scholar 

  5. 5.

    Hermans R, Lambin P, Van der Goten A et al (1999) Tumoural perfusion as measured by dynamic computed tomography in head and neck carcinoma. Radiother Oncol 53:105–111

    PubMed  Article  CAS  Google Scholar 

  6. 6.

    Cenic A, Nabavi DG, Craen RA et al (2000) A CT method to measure hemodynamics in brain tumors: validation and application of cerebral blood flow maps. AJNR Am J Neuroradiol 21:462–470

    PubMed  CAS  Google Scholar 

  7. 7.

    Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1:307–310

    PubMed  CAS  Google Scholar 

  8. 8.

    Goh V, Halligan S, Hugill JA et al (2006) Quantitative assessment of tissue perfusion using MDCT: comparison of colorectal cancer and skeletal muscle measurement reproducibility. AJR 187:164–169

    PubMed  Article  Google Scholar 

  9. 9.

    Ng QS, Goh V, Klotz E et al (2006) Quantitative assessment of lung cancer perfusion using MDCT: does measurement reproducibility improve with greater tumor volume coverage? AJR 187:1079–1084

    PubMed  Article  Google Scholar 

  10. 10.

    Cenic A, Nabavi DG, Craen RA et al (1999) Dynamic CT measurement of cerebral blood flow: a validation study. AJNR Am J Neuroradiol 20:63–73

    PubMed  CAS  Google Scholar 

  11. 11.

    Nabavi DG, Cenic A, Dool J et al (1999) Quantitative assessment of cerebral hemodynamics using CT: stability, accuracy, and precision studies in dogs. J Comput Assist Tomogr 23:506–515

    PubMed  Article  CAS  Google Scholar 

  12. 12.

    Goh V, Halligan S, Hugill JA et al (2005) Quantitative assessment of colorectal cancer perfusion using MDCT: inter- and intraobserver agreement. AJR 185:225–231

    PubMed  Google Scholar 

  13. 13.

    Fiorella D, Heiserman J, Prenger E et al (2004) Assessment of the reproducibility of postprocessing dynamic CT perfusion data. AJNR Am J Neuroradiol 25:97–107

    PubMed  Google Scholar 

  14. 14.

    Miles KA, Griffiths MR (2003) Perfusion CT: a worthwhile enhancement? Br J Radiol 76:220–231

    PubMed  Article  CAS  Google Scholar 

  15. 15.

    Blomley MJ, Coulden R, Dawson P et al (1995) Liver perfusion studied with ultrafast CT. J Comput Assist Tomogr 19:424–433

    PubMed  Article  CAS  Google Scholar 

  16. 16.

    Waaijer A, van der Schaaf IC, Velthuis BK et al (2007) Reproducibility of quantitative CT brain perfusion measurements in patients with symptomatic unilateral carotid artery stenosis. AJNR Am J Neuroradiol 28:927–932

    PubMed  CAS  Google Scholar 

  17. 17.

    Nabavi DG, Cenic A, Craen RA et al (1999) CT assessment of cerebral perfusion: experimental validation and initial clinical experience. Radiology 213:141–149

    PubMed  CAS  Google Scholar 

  18. 18.

    Erasmus JJ, Gladish GW, Broemeling L et al (2003) Interobserver and intraobserver variability in measurement of non-small-cell carcinoma lung lesions: implications for assessment of tumor response. J Clin Oncol 21:2574–2582

    PubMed  Article  Google Scholar 

  19. 19.

    Vos MJ, Uitdehaag BM, Barkhof F et al (2003) Interobserver variability in the radiological assessment of response to chemotherapy in glioma. Neurology 60:826–830

    PubMed  CAS  Google Scholar 

  20. 20.

    Sanelli PC, Nicola G, Tsiouris AJ et al (2007) Reproducibility of postprocessing of quantitative CT perfusion maps. AJR 188:213–218

    PubMed  Article  Google Scholar 

  21. 21.

    Sanelli PC, Nicola G, Johnson R et al (2007) Effect of training and experience on qualitative and quantitative CT perfusion data. AJNR Am J Neuroradiol 28:428–432

    PubMed  CAS  Google Scholar 

  22. 22.

    Leach MO, Brindle KM, Evelhoch JL et al (2005) The assessment of antiangiogenic and antivascular therapies in early-stage clinical trials using magnetic resonance imaging: issues and recommendations. Br J Cancer 92:1599–1610

    PubMed  Article  CAS  Google Scholar 

  23. 23.

    Rudin M, McSheehy PM, Allegrini PR et al (2005) PTK787/ZK222584, a tyrosine kinase inhibitor of vascular endothelial growth factor receptor, reduces uptake of the contrast agent GdDOTA by murine orthotopic B16/BL6 melanoma tumours and inhibits their growth in vivo. NMR Biomed 18:308–321

    PubMed  Article  CAS  Google Scholar 

  24. 24.

    Kan Z, Phongkitkarun S, Kobayashi S et al (2005) Functional CT for quantifying tumor perfusion in antiangiogenic therapy in a rat model. Radiology 237:151–158

    PubMed  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sotirios Bisdas.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bisdas, S., Surlan-Popovic, K., Didanovic, V. et al. Functional CT of squamous cell carcinoma in the head and neck: repeatability of tumor and muscle quantitative measurements, inter- and intra-observer agreement. Eur Radiol 18, 2241–2250 (2008). https://doi.org/10.1007/s00330-008-0990-1

Download citation

Keywords

  • Functional CT
  • Squamous cell carcinoma
  • Repeatability
  • Inter- and intra-observer agreement